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Glioblastomas (GBM) are the most common and aggressive tumors of the central nervous
system. Rapid tumor growth and diffuse infiltration into healthy brain tissue, along with
high intratumoral heterogeneity, challenge therapeutic efficacy and prognosis. A better
understanding of spatiotemporal tumor heterogeneity at the histological, cellular,
molecular, and dynamic levels would accelerate the development of novel treatments
for this devastating brain cancer. Histologically, GBM is characterized by nuclear atypia,
cellular pleomorphism, necrosis, microvascular proliferation, and pseudopalisades. At the
cellular level, the glioma microenvironment comprises a heterogeneous landscape of cell
populations, including tumor cells, non-transformed/reactive glial and neural cells,
immune cells, mesenchymal cells, and stem cells, which support tumor growth and
invasion through complex network crosstalk. Genomic and transcriptomic analyses of
gliomas have revealed significant inter and intratumoral heterogeneity and insights into
their molecular pathogenesis. Moreover, recent evidence suggests that diverse dynamics
of collective motion patterns exist in glioma tumors, which correlate with histological
features. We hypothesize that glioma heterogeneity is not stochastic, but rather arises
from organized and dynamic attributes, which favor glioma malignancy and influences
treatment regimens. This review highlights the importance of an integrative approach of
glioma histopathological features, single-cell and spatially resolved transcriptomic and
cellular dynamics to understand tumor heterogeneity and maximize therapeutic effects.

Keywords: glioblastoma multiforme, heterogeneity, tumor microenvironment, dynamic, spatial resolution, deep
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INTRODUCTION

Glioblastoma (GBM) is the most common malignant primary
brain tumor in adults, occurring most commonly in the 6th to 7th

decade of life (1). GBM is classified by World Health
Organization (WHO) as an astrocytic grade IV tumor, which
commonly presents as a heterogeneously enhanced mass by
neuroimaging. Microvascular proliferation, hypercellularity,
nuclear atypia, pseudopalisades, cellular pleomorphism, and
necrosis are hallmarks of GBM histopathology (2).

The prognosis for GBM is relatively poor and universally
fatal, with a median overall survival of approximately 16 months
from the time of diagnosis. O6-methylguanine-DNA methyl
transferase (MGMT) promotor methylation is detected in
about a third of GBM, and is prognostic of a better survival
outcome, and predictive of better treatment response to
alkylating chemotherapy. Isocitrate dehydrogenase 1 (IDH1)
mutations, which are associated with more favorable outcome,
represent a new tumor group termed ‘adult-type, diffuse glioma,
IDH-mutant, astrocytoma, grades 2-4’, while glioblastoma is
now reserved to the ‘adult-type, diffuse glioma, IDH1 wildtype’
(3–6). The current standard of care for GBM utilizes methods
that are agnostic of molecular GBM phenotypes. They comprise
an initial, maximally safe surgical resection, followed by
conformal radiotherapy with concurrent oral temozolomide
chemotherapy, followed by adjuvant temozolomide therapy. In
addition, the use of tumor treatment fields has been introduced
to the treatment of adult diffuse gliomas, though it is not
considered part of standard of care (7, 8). Historically, each of
the standard of care measures only adds a few months to
survival. Although bevacizumab improves progression free
survival, there is no evidence, at this time, that standard of
care second line treatment improves overall survival (9, 10).

Advancement in GBM treatments is urgently needed;
however, treating GBM faces numerous challenges due to, but
not limited to, temporal and spatial tumor heterogeneity, altered
cellular metabolism, and the unique immunosuppressive glioma
microenvironment (11, 12). Immunotherapies and molecularly
targeted personalized medicine have recently advanced the field
of oncology in many cancer types; however, targeted agents
against recurrent EGFR mutations and immune checkpoint
inhibitors have so far not improved overall survival for GBM
patients (13–19).

Moreover, assessing the treatment response holds significant
importance to developing better GBM treatments. However, it can
be quite difficult to differentiate tumor progression from
inflammatory or necrotic changes associated with treatment, such
as chemoradiation and immunotherapy, making neuroradiographic
assessment suboptimal in these cases (20, 21). The blood-brain-
barrierhindersdrugs fromreaching the tumor site, andalso limits the
utility of liquid biopsy (22). The lack of optimal surrogatemarkers of
survival to effectively assess treatment efficacy is a paramount
challenge the neuro-oncology community faces when evaluating
potential new therapies (23). These challenges suggest that
advanced, integrated histological, cellular, and molecular
characterization with spatial resolution can provide insights for
therapeutic interventions and predict clinical outcomes for GBM
Frontiers in Oncology | www.frontiersin.org 2
patients. Herein, we will review the recent advances made towards
these integrated approaches.
MOLECULAR GENETICS AND
EPIGENETIC ALTERATIONS IN GLIOMA

GBMs differ in histologic features, malignancy grade, and
molecular alterations. Recently, the presence and distribution
of genetic/epigenetic alterations have been added as criteria to
classify gliomas, refining the histological WHO classification,
which previously defined these tumors as glial in origin (24–26).
Recurrent IDH1 point mutations, which have been identified as
contributors to gliomagenesis (27, 28), is used to classify gliomas
and represents a major division of mutant IDH1 gliomas from
wild-type-IDH1 (wt-IDH1) gliomas. wt-IDH1 gliomas, WHO
grade IV, high grade gliomas (HGG) (12, 24, 29), present with
several genomic alterations and higher somatic mutation
frequency versus low grade gliomas (LGG) (30, 31). In adults,
wt-IDH1 gliomas retain ATRX activity, and typically co-exhibit
TP53 and TERT promoter (TERTp) mutations. In addition, wt-
IDH1 gliomas can harbor alterations in regulators of the RTK-
RAS-PI3K signaling cascade, including EGFR amplification, as
well as mutations or deletions to tumor-suppressor genes PTEN
and CDKN2A/B, and alterations to chromosomes 7 and 10 (12,
24, 25, 31). IDH1 mutation, usually at arginine 132 (R132H),
occurs in the vast majority of diffuse LGG (WHO grade II), and
occurs also in a LGG that has recurred as GBM (WHO grade IV)
(29, 32–35). IDH1-R132H, which is associated with better
prognosis in glioma, catalyzes 2-hydroxyglutarate production,
prompting epigenetic reprogramming of the glioma
transcriptome (29, 32, 36–39).

A subgroup of adult-type diffuse mutant IDH1 gliomas which
harbor 1p/19q chromosomal co-deletions (1p/19q-codel) and TERT
promotermutation are now classified as oligodendrogliomas (6, 40).
Epigenetics alterations are a remarkable feature of gliomas with
clinical significance. DNA methylation in CpG islands define the
CpG islandmethylator phenotype (G-CIMP), a hallmark ofmutant-
IDH1 glioma, which is linked to better prognosis (41, 42). On the
other hand, demethylation in CXCR4, TBX18, SP5, and TMEM22
genes are relatedwith tumor initiation and progression inGBM(43).
Analyzing methylation profiles of TCGA data identified DNA
methylation clusters designated subtypes LGm1 to LGm6, which
were linked to molecular glioma subclasses and WHO grades (32).
Also, methylation of CpG islands in theMGMTpromoter predicts a
better response to DNA alkylating agents (44). Recently, a novel
methylation subgroupof IDH-WTGBMwas introduced.This group
differs fromknownmolecular subgroups in termsofmethylation and
copy number profile with a distinct histological appearance and
molecular signature (45).

In addition, different histone mutations are associated with
pediatric brain tumors. Various studies have shown a high
frequency of two-point mutations in the genes of the histone
variants H3.3 “H3F3A”, and to a lesser extent H3.1 “HIST1H3B”,
which result in substitution of lysine at position 27 with
methionine (K27M) or glycine at position 34 with arginine or
August 2021 | Volume 11 | Article 703764
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valine (G34V/R). Further reports highlighted the association of
K27M mutation with midline gliomas (MLG) and G34V/R
mutation with gliomas of the cerebral hemispheres (46–48). In
this context, epigenetic modifications to histone tails by
methylation or acetylation in gliomas impact gene expression
and, therefore, tumor characteristics (38, 49, 50). Identification
of these alterations have been useful for predicting prognosis of
glioma patients (51) and for developing therapeutics agents
targeting regulators of histone modifications, such as DNA
methyltransferase (DNMT) inhibitors and histone deacetylase
inhibitors (HDACIs) (52).

As a consequence of the genetic alterations that classify gliomas,
significant signaling pathways are altered. This includes activation
of the growth factor receptor tyrosine kinase (RTK) pathways as
result of PDGF and EGFR overexpression (53, 54). The frequent
activation of RAS, PI3K/PTEN/AKT, RB/CDKN2A-p16INK4a,
and TP53/MDM2/MDM4/CDKN2A-p14ARF pathways are
implicated in glioma proliferation (55, 56). On the other hand,
the anaplastic features of HGG/GBM can be boosted by NOTCH
signaling activation, which is related with hypoxia and PI3K/AKT/
mTORandERK/MAPKpathways (57).Other alterations in glioma
cell signaling include metabolic (58), cell differentiation (59), and
DNArepair (38, 60) pathways, all with the therapeutic implications.
HGG INTERTUMORAL AND
INTRATUMORAL MOLECULAR
HETEROGENEITY

HGG/GBM are characterized by high intertumoral and
intratumoral heterogeneity. This heterogeneity is observed at
different inter-related levels (histological, cellular and molecular)
and is one of the main features that hinders tumor treatment
(Figure 1). Molecular unsupervised transcriptome analysis of
GBM revealed different tumor clusters, highlighting the
prominent intertumoral heterogeneity. Different studies over the
past 15 years have attempted to classify GBM into molecular
subtypes. Back in 2006, Phillips et al. reported the molecular gene
expression profile of 76 HGGs, defining signatures from a set of 35
genes, which characterized 3 different subtypes: Proneural,
Proliferative, and Mesenchymal. They found a correlation
between molecular subtypes and histological tumor grade. Also,
Mesenchymal and Proliferative tumors showed amarkedly inferior
prognosis compared to Proneural (61). Subsequent studies carried
out by Verhaak et al. used integrated, multidimensional genomic
data and DNA copy number to define a more robust gene
expression-based molecular GBM classification into 3 confirmed
subtypes with a signature from 210 genes per subtype (53). Overall,
aberrationsandgeneexpressionofEGFR,NF1, andPDGFRAdefine
Classical, Mesenchymal, and Proneural subtypes, respectively.
Specifically, the Classical subtype exhibited chromosome 7
amplification associated with high-level EGFR amplification. This
subtype also lacked distinct additional genetic abnormalities in
TP53, NF1, PDGFRA, or IDH1, but affected expression of genes,
such as FGFR3, PDGFA, EGFR, AKT2, and NES. The
Mesenchymal subtype displayed focal hemizygous deletions of a
Frontiers in Oncology | www.frontiersin.org 3
region at 17q11.2, containing the gene NF1. This subtype was
associatedwith greater necrosis and inflammatory infiltrates, which
was linked to higher expression of tumornecrosis factor andNF-kB
pathway genes, such as TRADD, RELB, and TNFRSF1A. Some of
the most relevant differentially expressed genes of Mesenchymal
tumors were CASP1/4/5/8, ILR4, CHI3L1, TRADD, TLR2/4, and
RELB, among others. The Proneural subtype was defined by
PDGFRA and TP53 alterations and IDH1point mutations and
differential expression of DLL3, NKX2-2, SOX2, ERBB3, and
OLIG2 (53).

Using DNA methylation profiles from 396 GBMs, Brennan
et al. in 2013 identified six methylation clusters. They found that
Cluster M1 (60%) was enriched in Mesenchymal subtype,
Cluster M3 (58%) was enriched in Classical subtype, and the
G-CIMP cluster was enriched in Proneural subtype. They
observed that the Mesenchymal subtype expressed higher levels
of endothelial markers, such as CD31 and VEGFR2, in
concordance with Phillips et al. (61) and inflammation
markers, such as fibronectin and COX2. On the other hand,
the Proneural subtype was associated with somatic mutations to
genes such as IDH1, TP53, ATRX, and MYC, and the Classical
subtype with EGFR amplifications or mutations (31).

Lastly, in 2017, Wang et al. postulated GBM-specific
intertumoral heterogeneity, and defined 3 tumor-intrinsic
transcriptional subtypes from transcriptomic analysis of wt-IDH
GBMsamples, derivativeneurospheres, andsingle-glioma-cell gene
expression profiles (62, 63). Subtypeswere designated as Proneural,
Mesenchymal, and Classical using a 50-gene expression signature
per subtype, which represented a 42 to 54% overlap with previous
studies (53). The 50-gene expression signature by subtype could be
summarized by the most relevant genes from each group. The
Mesenchymal subtype overexpresses BCL3, TGFBI, ITGB1, LOX,
COL1A2, VDR, IL6, and MMP7, the Proneural subtype has
increased expression of GARBR3, HOXD3, ERBB3, SOX10,
CDKN1C, PDGFRA, HDAC2, and EPHB1. Finally, the Classical
subtype was characterized by overexpression of PTPRA, ELOVL2,
SOX9,PAX6,CDH4, SEPT11,MEOX2, andFGFR3, among others.

A new study by Garofano, L. et al. postulates a novel pathway-
based stratification of GBM that uncovers new subtypes with
potential prognostic relevance, namely mitochondrial (MTC),
glycolytic/plurimetabolic (GPM), proliferative/progenitor (PPR),
and neuronal (NEU) (64).

In another study, Neftel et al. showed that glioma subtypes are
associate with a set of cellular states that define 4 different groups:
NPC-like (neural progenitor like), OPC-like (oligodendrocyte
progenitor like), AC-like (Astrocyte like) and MES-like
(mesenchymal like). The frequency of each steady-state is
modulated by specific genetic modifications (CDK4, PDGFRA,
EGFR and NF1); in addition, each single tumor can contain a
diversity of states maintained by cellular plasticity (65).

Although similarities and discrepancies surround glioma
subtype classification, the Mesenchymal subtype is one of the
steadiest subtypes, when analyzing human GBM tissues, GBM
xenograft models, and derivative GBM stem cells (53, 61, 66, 67).

In addition to the vast molecular intertumoral heterogeneity,
GBM also exhibit high heterogeneity within the same tumor
August 2021 | Volume 11 | Article 703764
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FIGURE 1 | Spatiotemporal complex intratumoral heterogeneity of GBM. GBM intratumoral heterogeneity at the histological, cellular and dynamic level is illustrated.
The schematic representation of the gliomas TME highlights the spatio-temporal heterogeneity at the histological, dynamic, and cellular level. We indicate various
hallmarks of GBM. (1) Pseudopalisading necrosis in GBM is characterized by garland-like organization of tumor cells at the edge of areas of tumor necrosis. Glioma
cells migrate away from hypoxic regions and invade into healthy tissue at the infiltrating edge. (2) Endothelial hyperplasia represents the vascular lesions
characterized by the proliferation of endothelial cells. Glomeruloid vessels and extensive endothelial multilayering result from the endothelial hyperplasia characteristic
of GBM. (3) Microvascular proliferation appears as glomeruloid tufts of multilayered endothelial cells together with smooth muscle cells and pericytes. VEGF release
from the surrounding necrosis tissue acts on nearby vessels to cause vascular hyperplasia, including microvascular proliferation. (4) Scattered large pleomorphic
glioma cells represent multinucleated giant cells with generalized nuclear atypia. (5) Poorly vascularized regions of the tumor become hypoxic and necrotic. At the
dynamic level GMB displays different migratory patterns. (6) The tumor–brain interface is characterized by an invasive edge that harbors invasive glioma cells that
migrate along white matter tracts or extracellular matrix fibers to infiltrate the brain either as collective invasion (i.e., connected elongated cells infiltrating the brain
parenchyma), or (7) Single-cell invasion characterized by amoeboid movements, weak intercellular adhesions, and random movement. (8) Glioma cells are shown to
also invade collectively using the perivascular space. Perivascular glioma cells quickly invade the perivascular space as a conduit for invasion. Bottom panel shows
the striking cellular heterogeneity of GBM, being composed of both neoplastic cells and nonmalignant cells. It includes several phenotypes of tumor cells, such as
rounded cells and mesenchymal-like cells, as well as nonmalignant cells, that form the tumor microenvironment (TME) and make up 50% of the tumor mass. TME is
composed of normal brain residents: neurons, astrocytes, oligodendrocytes and microglia; endothelial cells from the vasculature, surrounded by perivascular-
mesenchymal cells; and immune system infiltrating cells. 95% of the TME are tumor associated macrophages (TAM), derived either from circulating monocytes or
microglia. The remaining 5% are mainly dendritic cells, with smaller contributions of T cells, B cells, NK cells and neutrophils. Understanding tumor heterogeneity
composition allows to employ better antitumor therapies.
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mass, showing histologically and molecularly dissimilar areas
(Figure 1). Research studies using tumor sampling from different
anatomical locations demonstrated that 60% (6/10) of tumors
presented two or three different subtypes within the same tumor
(68). Other studies showed that molecular subtypes correlate
with histological features. Mesenchymal tumor was associated
with hypoxic and perinecrotic areas and high microvascular
proliferative zones, while Classical was related to vascular and
invasive zones. Tumors with these two characteristics had the
worst prognosis (69).

Single-cell RNA-Seq (scRNA-Seq) analysis has emerged as an
important approach to dissect the cellular and molecular profile
of complex tumors compared to bulk conventional analysis.
scRNA-Seq has yielded insights into phenotypic and genotypic
differences resulting from tumor cells, the relation with the
neural lineages, and the tumor microenvironment, and
subpopulations of transformed cells in these extremely
heterogeneous tumors (63, 70–72). Analysis of scRNA-Seq
suggested that GBM consist of a combination of tumor cells
with different GBM subtype footprints (63). Patel et al. analyzed
intratumoral heterogeneity by single-cell full-length
transcriptomes (SMART-Seq) of isolated cells from five freshly
resected human wt-IDH/EGFR amplified GBM depleted of
CD45+ cells. They observed a genetic correlation between
individual cells and transcriptional intratumoral heterogeneity
within the same tumor. They also observed mosaic protein
expression of common signaling pathways affected in GBM,
such as EGFR, PDGFRA, PDGFA, FGFR1, FGF1, NOTCH2,
and JAG1. Interestingly, all tumors contained heterogeneous
combinations of individual cells corresponding to different
TCGA defined subtypes. They observed that intratumoral
subtype heterogeneity imparted significant insights into GBM
biology and prognosis, where extensive heterogeneity was
associated with reduced survival. Tumors highly heterogeneous
for different subtypes or displaying Mesenchymal signatures had
poorer outcome than pure Proneural GBM (63). On the other
hand, Wang et al. reported multiple activation of different
subtypes associated with intratumoral heterogeneity. They
suggested that only 8% of the TCGA samples activated more
than one transcriptional subtype, displaying low simplicity
Frontiers in Oncology | www.frontiersin.org 5
scores, while GBM samples with a single subtype had higher
simplicity scores. Using this approach, they demonstrated that
samples with high simplicity scores had significant survival
differences between Mesenchymal and non-Mesenchymal
tumors. They concluded that the intratumoral heterogeneity at
single-cell level is captured in the transcriptional signature of the
bulk tumor (66).

A recent study suggested that tumoral classification pays little
attention to the importance of existing intratumoral heterogeneity.
They focused on regional architecture of the tumor by analyzing
different tumor areas using 9 immunoreactivity biomarkers relevant
for GBM. They found that 3 of the 5 pathophysiologically relevant
clusters, transformed neuronal, highly proliferative, and
mesenchymal stem cell regions, correlated with the 3 tumor
subtypes described by Phillips et al. Particularly the Mesenchymal
subtype was characterized by high vimentin and nestin expression
levels (73). All together, these studies highlight the complexity of
GBM molecular signatures and emphasize the importance of
considering intratumoral heterogeneity to understand tumor
growth and invasion, and develop novel antitumor strategies.
GLIOMA TUMOR MICROENVIRONMENT
AND CELLULAR HETEROGENEITY

Gliomas are a complex composition of both malignant and
nonmalignant cells. Nonmalignant cells, including microglia,
astrocytes, macrophages, lymphocytes, endothelial, and other
cells, collectively constitute the tumor microenvironment
(TME), making up ~50% of GBM tumor mass as shown in
Figure 1 (71). The vast majority of GBM infiltrate can be
classified as either macrophage or microglia (~95%), with the
remaining population comprised primarily of dendritic cells
(~4.5%) (71). Darmanis et al. found that transcriptionally
distinct immune cells residing in the core increased tumor
growth, survival, and invasion by inhibiting inflammation,
increasing angiogenesis, and extracellular matrix remodeling
(71). Microglia are the predominant resident immune cells in
the healthy brain; however, under pathological conditions, brain
parenchyma recruits circulating monocytes, which differentiate
August 2021 | Volume 11 | Article 703764
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into macrophages (74, 75). Tumor-associated macrophages
(TAM) play key roles in promoting invasion, angiogenesis,
metastasis, and immune suppression (76). They can originate
from two distinct lineages: tissue-resident microglia (CD45lo

MG-TAM) or monocytes recruited from peripheral circulation
(CD45hi M-TAM) (77–79). LGG tend to have more MG-TAM,
while HGG are enriched in M-TAM (80). Recent work has
described that in GBM TAMs within the tumor core mostly
originate from the bone marrow derived pool whereas those in
the tumor periphery are largely derived from microglial cells
(81). These findings correlate with transcriptomic data (71) and
reviewed in (79). TAM populations can also be subdivided into
activation state phenotypes: Unstimulated M0, classically
activated M1, and alternatively activated M2 (17, 74). The M1
phenotype is anti-tumorigenic and is present at lower levels in
GBM infiltrate, while the M2 phenotype is pro-tumorigenic and
more abundant, correlating with shorter survival (82). It has
been shown that resident microglia are crucial modulatory cell
population playing a central role in regulation of vascular
homeostasis and angiogenesis and represent an alternative
source of pro-angiogenic growth factors and cytokines (79, 83).
CXCL2 is expressed in several cell types present in GBM such us
endothelial cells, glioma cells, T cells, mast cells and myeloid
cells, and its expression level has been correlated with GBM
aggressiveness (84). Isolated microglia/macrophages from
glioma produce a variety of pro-angiogenic molecules as well
as high level of CXCL2 (83). CXCL2/IL8/CXCR2 axis has showed
to be involved in maintaining GBM angiogenesis (85, 86). The
CXCR2 antagonist SB225002 has shown inhibition in tumor
growth, and led to reduced number of TAMs as well as tumor
vessels (85, 86). Malignant cells recruit microglia andmacrophages
to the tumor, where they acquire an M2 phenotype and contribute
to an immunosuppressive TME. One of the main factors recruiting
TAM is the chemo-attractant, colony-stimulating factor (CSF),
which is also a critical for macrophage function. Attenuating the
interaction between CSF-1 and its receptor by employing target
inhibitors reduces TAM numbers at the tumor site and impairs
glioma invasion (87).

Although they have an abundance of TAM, gliomas are defined
as immunogenically “cold” because they have low levels of
infiltrating T cells (17, 88). Lymphocyte infiltrate present in the
TME are CD4+T helper, CD8+T cytotoxic, and Tregs, with CD4+
cells more numerous than CD8+ (89). High Treg levels in GBM
suppress the function of antigen-presenting cells and inhibit T cell
proliferation, contributing to tumor evasion (90). Tregs may be
immunosuppressive byemploying immune checkpointsmolecules,
such as CTLA-4 and PD-L1 (17, 19, 91, 92). Also, recent work
showed that inhibition of the CLEC2D-CD161 pathway may
provide synergistic therapeutic benefit when combined with PD-1
blockade by enhancing the anti-tumor function infiltrating T cells
in GBM of distinct T cell populations (93).

Myeloid-derived suppressor cells (MDSC) are found extensively
in GBM TME (94). They are a heterogeneous population of
immature myeloid cells formed from myeloid progenitors and
macrophage, granulocyte, and dendritic cell precursors. However,
MDSC do have some common features, such as their myeloid
Frontiers in Oncology | www.frontiersin.org 6
origin, immature state, and,most importantly, the ability to convert
immune responses from a Th1 to a Th2 phenotype, which potently
inhibitsCD4+ andCD8+Tcells and fosters an immunosuppressive
TME (95). Inhibiting COX2 reduces MDSC recruitment and
increases cytotoxic T cell levels (96).

Elevated tumor-associated neutrophil (TAN) infiltration
correlates with lower survival, suggesting that neutrophil infiltrate
contributes to immunosuppression (97), and subsequent
tumorigenesis and tumor growth. Elevated neutrophil CXCL8
expression boosts recruitment, and is found in high levels in
gliomas (98). Disrupting the interaction of CXCL8 with its
receptors, CXCR1 and CXCR2, is a possible approach for
dismantling neutrophil infiltration and its associated immune
suppression. In addition to TAM, MDSC, TAN, and Tregs, Bregs
also suppress the immune response inGBMby interactingwith other
TME cells to augment immunosuppression (99). Glioma cells can
induce a phenotype switch fromBcells toBregs,which contributes to
Tregs recruitment and suppression of CD8+ T cells (100, 101).

There are also non-immune cell components of the GBM
TME, which contribute to tumor progression. A common
histologic feature of glioma is reactive astrocytosis, in which
tumor-associated astrocytes are more proliferative, have JAK–
STAT pathway activation, and CD274 expression (102).
Astrocytes, as wells as microglia, secrete anti-inflammatory
cytokines, contributing to an immunosuppressive environment
(102). A pro-tumorigenic function has also been described for
neurons, by either paracrine or autocrine mechanisms (103), as
well as through functional synaptic integrations (104). Even
though oligodendrocytes are detected in relatively high
numbers by scRNA-Seq of glioma clinical samples, their role
in glioma pathology has yet to be determined.

Stromal components, such as endothelial cells, and pericyte/
mesenchymal stem cells (MSC), also play a role in tumor formation
and progression. MSC are a small population characterized by self-
renewal, expression of stemness markers, and multi-lineage
differentiation properties (105). Tumor cells hijack neural
development mechanisms, shifting MSC into glioblastoma stem
cells (GSC), which possess tumor-propagating potential and are
resistant to radiotherapy and chemotherapies (105, 106). Since
MSC cells share expression markers with pericytes and are mainly
localized around blood vessels (107), it is difficult to differentiate
MSCs from pericytes (108). Up till now, there is no exclusive set of
expressionmarkers that differentiatesMSC from pericytes, making
it difficult to distinguish between them.

As outlined in this section, the interactions between glioma
cells and constituents of the TME play key roles in tumor growth
and progression. A deeper understanding of the dynamics of
these interactions would bring us a step closer to designing
effective treatments.
TUMORAL DYNAMIC HETEROGENEITY
PATTERNSACROSSHISTOLOGIC FEATURES

Gliomas are characterized by intratumoral heterogeneity and
diffuse invasion into the healthy parenchyma. In doing so,
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gliomas use various motility patterns, i.e., single cell invasion or
collective invasion (Figure 1) (109–113). Tumor growth and
invasion is usually considered to be a stochastic. However,
whether tumor growth actually results from random processes, or
whether gliomas self-organize to promote tumor growth and
invasion is not well understood. Thus, the existence of organized
dynamic structures in tumors, andwhat role theymayplay in tumor
progression remains poorly elucidated (114). We recently
characterized the complex dynamics of glioma cells in both the
tumor core and at the tumor invasive borders, using mouse glioma
explants from genetically engineeredmousemodels (111, 113).We
recently found that collectivemotionof tumor cells canbe identified
histologically as fascicles of aligned spindle-like andmesenchymal-
like tumor cells. For simplicity, we propose to refer to these fascicles
as oncostreams. Together with their capacity for collective motion,
our data indicate that they likely contribute to tumor malignant
behavior. Thus, we interpret oncostreams to be histological
structures that represent areas of collective motion (113). As our
data indicate that oncostream density correlates with tumor
malignancy, we suggest that they are characteristic pathological
components of gliomas. Oncostreams display two main types of
collective motion, as defined elsewhere by us (112): (i) streams
(↑↓) = cells move in both directions, (ii) flocks (↑↑) = cells move
mostly in one direction. Cells that move without a preferred
direction are defined as swarms and are histologically identified
as areas of round cells. We recently showed, using agent-based
mathematical modeling, that interactions between individual cells
are sufficient to produce these large-scale patterns of collective
motion (112). Collective motion patterns have been observed
during normal development and also in pathological conditions,
such as epithelial to mesenchymal transitions in cancers, followed
by metastasis to distant organs (115–117). Directionally correlated
cell movement within the tumor core have been also observed in
recent studies using ex vivo explants of spontaneous intestinal
carcinoma. Staneva et al. provided detailed mathematical support
for the existence of dynamic patterns, such as currents and vortices.
Their currents are homologues to our flocks, since cellsmove in one
single direction inbothdescriptions (118).Equally, studiesof in vivo
motility of human glioma cell invasion within immune-suppressed
animals, indicate complex motility patterns at the tumor border
(118). Interestingly, these authors determined that cells can actually
move towards andaway fromthe tumor,using two typesof invasion
patterns at the glioma border, the invasive margin of multicellular
invading groups of cells, and the diffuse infiltration of single cells.
Swarms, in our descriptions, correspond todiffuse infiltration, since
these cells present with an increased speed and less directionality in
both studies, whereas the invasive margin corresponds to our
directional collective motion patterns (119). The role of collective
dynamic patterns within glioma tumors has not been addressed in
detail so far. A better understanding of glioma dynamic
heterogeneity, taking into account its constituent histological
features and their underlying molecular basis, are essential to
provide a more accurate picture of gliomas. We believe that the
eventual pharmacological disruption of collective glioma dynamic
patterns will inhibit glioma growth and progression, and will
become a novel treatment approach.
Frontiers in Oncology | www.frontiersin.org 7
THE GBM MOLECULAR LANDSCAPE:
CURRENT AND FUTURES PERSPECTIVES
IN METHODOLOGIES TO ANALYZE GBM
WITH SPATIAL RESOLUTION

Molecular studies of bulk tumors or scRNA-Seq studies disclose the
complex cellular andmolecular heterogeneity of GBM, but lack the
spatial dimension of tumor tissue. The spatial heterogeneity of
glioma tumors is not just regulated by the mixture of genotypic
profile of individual cells, but rather is shaped by the crosstalk
between tumor and TME cells in different tumor areas.
Understanding how the molecular heterogeneity relates to the
classical histological GBM hallmarks would provide invaluable
information for integrated characterization, diagnosis, and
treatment (Figure 2).

In recent years, in situ spatially characterized tissue analysis
using state of the art technology, such as spatial transcriptomics or
multiplex protein expression, opened up new paths to study in
greater detail the cellular and molecular heterogeneity in the context
of intact tumor tissue including GBM (121, 122). These technologies
span tissue laser capture microdissection (LCM) combined with
ex situ RNA-Seq analysis, in situ DNA oligonucleotide barcoding
followed by ex situ sequencing, and computationally assigned spatial
information to expression and imaging methods based on
fluorescence in situ hybridization (FISH) or in situ sequencing
(ISS) (123). Methodology parameters, such as sample type and
processing, number of detected genes, experimental throughput,
and spatial resolution need to be considered before selecting the
appropriate method.

Some studies using spatially resolved transcriptomic analysis
demonstrated the importance of these technology for examining
spatial heterogeneity of the glioma TME. Laser scanning
microdissection and RNA-Seq analysis assigned genomic alterations
and gene expression patterns to specific GBM histological hallmarks,
including tumor infiltration, pseudopalisades cells around necrotic
areas, and cellular tumor and microvascular proliferation (69). This
Ivy Glioblastoma Atlas project (IvyGAP) combined spatial molecular
information with histological features and the clinical database from
the patients’ cohort, providing deeper understanding of tumor
heterogeneity. Intratumoral microenvironment-specific expression
from the IvyGAP atlas also advocated potential therapeutic avenues
by identifying brain tumor initiating cells and target genes within
individual anatomical regions (124, 125). Our recent study proposed
an improved laser scanning microdissection methodology to study
the gene expression pattern of multicellular mesenchymal-like
structures within the glioma tumor core and at the invasion front
(113, 125–128).

Novel studies have recently provided new perspectives in the
analysis of proteomics, metabolomics, and lipidomics in different
cancers (129–131). InGBM,Gularyan et al. describe developing the
TOF-SIMS (time-of-flight secondary ion mass spectrometry)
methodology to detect protein expression and metabolites in
paraffin or frozen glioma sections with spatial resolution (132).
This allowed morphological differentiation of diverse regions in
patient-derived tumors, which correlated with clinically relevant
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data, i.e., tumor grade, survival, to study GBM. Employing these
emerging methodologies that combine histopathology with next
generation sequencing or metabolomics are essential for
translational applications, which identify novel potential targets
in glioma tumors. These approaches could generate a new
understanding of glioma behavior, uncovering the heterogeneity
in functions, dynamics, and interrelation of tumor cells with TME
cells (Figure 2).

COMPUTATIONAL DEEP LEARNING
ANALYSIS AND NOVEL IMAGING
TECHNOLOGIES APPLIED TO
TUMOR HETEROGENEITY

The recent breakthroughs in artificial intelligence (AI),
specifically deep neural networks, have resulted in major
advances in glioma radiomics and digital pathology. Given a
Frontiers in Oncology | www.frontiersin.org 8
sufficiently large amount of training data, deep neural networks
can identify the optimal set of image features to achieve high
performance on a specific task, such as image classification. For
example, deep neural networks can classify tumors harboring
isocitrate dehydrogenase-1/2 (IDH1/2) mutations versus wt-
IDH1/2 from brain magnetic resonance imaging (MRI) (133,
134). Similar methods have been applied to diagnose 1p/19q co-
deletion and MGMT promotor methylation status (135).

Over the previous decade, digital pathology has experienced a
renaissance due to two major factors: (1) the availability of large,
public pathology datasets (136) and (2) major breakthroughs in
computer vision methods. The application of deep neural
networks to the analysis and interpretation of whole-slide
images (WSI) has ushered in a new era of digital pathology in
cancer (137–140). Efficient whole-slide scanning and digital
pathology tools have allowed for quantitative microscopic
analysis of tumor heterogeneity (141). Tumor microscopy
provides essential phenotypic and microenvironment features
FIGURE 2 | Schematic illustration of the integrative translational preclinical and clinical workflow for translational implications. (A) First, clinical information is collected
including the MRI and specific glioma grade type. (B) Following surgery, neuropathological studies are used for both histopathological assessment and investigation of
intratumoral heterogeneity. The histopathology images in Figure 2B are modified from Figures 1.34A, 1.35A,B, 1.41A in Chapter 1 Astrocyte Tumors, in IARC, and
Otmar D. Wiestler. WHO Classification of Tumours of the Central Nervous System: WHO Classification of Tumours of the Central Nervous System (4th Edition), edited
by David N. Louis, World Health Organization, 2006 (120). (C) Next, multiregional studies of the surgical samples can be harnessed to determine molecular targets
within GBM employing bulk RNA-seq, scRNA-seq and spatially resolved transcriptomics. scRNA-seq method examines heterogeneity at very detailed resolution. The
precision treatments are assessed according to tumor heterogeneity evaluation and potential pharmacological sensitivities. (D) Prediction of histopathological features
based on a novel artificial intelligence analysis of histological data will further aid clinical decisions. Furthermore, intratumoral heterogeneity assessment based on
advanced imaging and machine-learning predictions should be carried out to monitor spatio-temporal heterogeneity dynamically and treatment. (E) GBM patient
derived glioma cells, neurospheres and organoids can be exploited for preclinical modeling and perform pharmacological drug screening using in-vitro and ex-vivo
assays. Patient derived organoids model the parental tissue and can be used to complement standard molecular pathology to understand mechanisms of resistance
and can be applied to numerous functional assays such as: tumor cell survival, proliferation and self-renewal, and ex-vivo invasion/migration assays to identify
pharmacological agent to target glioma invasion. Integrative GBM analysis attempts to improve predictive outcomes and treatments for GBM.
August 2021 | Volume 11 | Article 703764

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Comba et al. Towards Targeting Glioblastoma Heterogeneity
not characterized by molecular profiling or -omics data. The
spatial relationships between tumor-associated stroma and
tumor infiltration can be directly visualized at single-cell
resolution using digital pathology (Figure 2).

Our group is currently investigating using optical microscopy
and AI to rapidly characterize fresh glioma specimens (138, 142–
144). By combining stimulated Raman histology, a rapid, label-
free optical imaging method, with deep neural networks, we can
automate glioma classification and grading in under 2 minutes.
Moreover, we can detect regions of dense, viable tumor
infiltration in primary and recurrent tumors.

GLIOMA HETEROGENEITY AND TME IN
CLINICAL THERAPEUTIC RESISTANCE

Within individual tumors, there is significant heterogeneity at
the TME level, wherein unique spatial niches harbor numerous
cell populations (65, 145–148). These niches are dynamic and
adjust to environmental pressures, such as treatment. Indeed,
recent data reinforces this adaptive remodeling within tumors.
Neftel et al. showed that gene expression in GBM is driven by
four different cellular states, which are dynamic and driven by
genetic, epigenetic, and microenvironmental factors (65). Even
unique genetic subclones were found to exist within all 4 cellular
states. Longitudinal assessment of paired patient specimens has
revealed unique patterns of clonal evolution with standard of
care treatment, highlighting evidence that rare resistant
subclones often exist within the initial tumors that are often
responsible for treatment resistance (149, 150).

The clinical implication of such profound dynamic cellular and
microenvironmental heterogeneity is vast. How does one target a
tumor with various subtypes of dynamic gene expression wherein
local TMEs maintain and protect tumor cells? With this
understanding, it is not unexpected that single target therapies
have largely failed in GBM. For example, EGFR alterations are
common GBM driver mutations, most frequently as the EGFRvIII
variant, which results in a detectable antigen. Clinical trial results of
rindopepimut, a peptide vaccine targeting this variant, were
disappointing and found that patients who progressed through
treatment lost EGFRvIII expression (18, 151, 152). SRC and SRC
family kinases (SFKs) have a broad and important role innumerous
signaling pathways, which promote GBM tumor growth and
invasion; however, a clinical trial assessing Dasatinib, a potent
SFK inhibitor, failed to meet its clinical endpoint (153, 154).
Similar results occurred from targeting KIT amplification or
mutation with Imatinib (155, 156) and TGFb inhibitors (157,
158), amongst others. The most well-known failure of a single
targeted therapy is bevacizumab, amonoclonal antibody against the
vascular endothelial growth factor (VEGF), which is highly
expressed in GBM and associated with endothelial cell
proliferation and angiogenesis (9, 10). Despite an initial imaging
response, patient survival did not improve.On the otherhand, there
are targeted therapies thathave shown somepromising results, such
as targeting BRAFv600e mutations, although using single agents
often results in recurrence, which has led to targeting BRAF
combined with MEK inhibition (131, 159). In spite of many new
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therapeutic approaches being in clinical trials, so far, unfortunately,
none has shown efficacy in randomized control double blinded
Phase III clinical trials (16, 17, 160)

Overall, results from targeted therapy have been disappointing,
although there may be numerous reasons why certain therapies
were unsuccessful. Despite positive findings in murine models,
penetrance across thehumanbloodbrainbarrier andactivitywithin
the brain at the clinical drug dosages are rarely validated. Perhaps
the dosage required for penetration and efficacy in humans is not
utilized, or not attainable. This further emphasizes the need for
phase 0 studies assessing drug penetration and response in human
studies. Furthermore, clinical trials may have failed to properly
enrich patients likely to benefit; thus, identifying appropriate
biomarkers may lead to better patient selection.

Nevertheless, the most likely failure of our current treatment
strategies is a lack of understanding of the significant dynamic
tumor heterogeneity, which drives therapeutic resistance.
However, it is yet unclear how clinical therapeutics can be
altered to target this intra and intertumoral heterogeneity. We
must consider therapies that address multiple resistance
pathways, including immune-based therapies that may target
multiple tumor antigens (19, 161–163), or therapies targeting
common metabolic and physiological pathways, which may
improve chances of success (164, 165). Furthermore, greater
effort in developing preclinical models and clinical studies to
understand spatial heterogeneity, tumor recurrence, and
evolutionary trajectories in GBM are vital (Figure 2).
PRECISION ONCOLOGY FOR GLIOMAS:
TARGETING SPATIAL HETEROGENEITY

Cancer therapies have evolved from traditional chemotherapy
and radiotherapy options to more personalized and focused
approaches. We have seen remarkable progress in recent years,
especially in pancreatic, prostate, and ovarian cancers. Precision
oncology leverages genetic alterations and molecular markers
present in the patient tumor to deliver a personalized therapeutic
regimen (166). The progress of precisionmedicine essentially relies
on identifying targetable biological features in tumors (167). This
presents a significant challenge, especially for GBM,which is highly
heterogeneous. Glioma cells vary in their morphology, underlying
gene expression, and genetic mutational landscape (168).
Consequently, any chosen therapeutic target may be expressed by
most, but not all, cells, resulting in incomplete tumor eradication.

Mutant IDH status, MGMT promoter methylation status,
BRAF mutation, and upregulated PI3K/AKT/mTOR signaling
pathway have drawn attention as actionable alterations in LGG
patients (35, 169–171). Adult brain tumors have seen some
progress with precision medicine approaches, especially
targeting BRAF, H3K27 demethylation, and NTRK fusions
(170, 172, 173). Targeting DNA repair mechanisms with PARP
inhibitors, and mutant IDH enzyme and gene fusions with
appropriate inhibitors holds potential for treating GBM
patients with such genetic alterations (171, 172, 174–176).
Identification of several markers relevant to GBM diagnostics
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using liquid biopsies with NGS for circulating free DNA and/or
circulating tumor cells could be used in molecular diagnosis of
cytological specimens and potential administration of innovative
precision therapy (177, 178).

Nevertheless, spatial and temporal heterogeneity is a critical
challenge that the neuro-oncology field must address before
precision oncology can be considered a viable option for brain
tumor patients (62, 69, 179, 180). Spatial heterogeneity in GBM
resected tumors is recognized in transcriptional atlases, where
genomic alterations and gene expression patterns vary between the
leading edge, infiltrating tumor, cellular tumor, pseudopalisading
cells around necrosis, and microvascular proliferation regions (69).
To explain the evolution of multiple GBMs (M-GBMs), Lee et al.
proposed amultiverse model based on extensive bulk and single-cell
RNAseq data (62). They demonstrated that M-GBMs are more
genetically diverse than nearby tumors and genetic similarity
between multiregional samples correlates with treatment response.
Furthermore, enrichment of PIK3CAmutations inM-GBMs, as well
as the effects of PAM inhibitors, which are more selective in patient-
derived glioma cells. Their findings support the truncal target
hypothesis, which states that truncal mutations can help guide
more effective therapies (62). Recently, it has been shown within a
single GBM tumor, that intratumoral spatial heterogeneity of
Bruton’s Tyrosine kinase activity in tumor core versus edge cells
showed distinct therapeutic responses (181).

Glioma-initiating cells (early-branched, ancestor-like tumor
cells) at tumor edges receive signals from the tumor core, which
promotes their malignancy (182–184). Evidence from several
murine tumor models supports the Edge-to-Core progression
theory (182). However, it is unclear if this hypothesis universally
describes thedevelopmentofprimaryGBM.Brain tumorcells at the
edge reside in a distinct environment from the tumor core,
interacting with various somatic cells, including neurons,
astrocytes, vascular endothelial cells, and immune cells (104, 185–
188). These tumor-associated somatic cells may contain cellular
populations that can activate or suppress tumor cells.Multi-OMICs
studies have established largely distinct signaling pathways
activated in edge- and core-located tumor cells viz., Esm1/
endocan, Bruton’s Tyrosine Kinase, nitrogen metabolism. Thus,
developing spatially distinct therapeutic modalities for GBM is a
critical challenge (181, 182, 189–191). Understanding the
phenotypic complexities of patient tumor cells will necessitate
molecular investigation to develop effective precision treatments
for gliomas (Figure 2).
CONCLUSIONS

Over the last few years, tumor heterogeneity has come to the
forefront as a bona fide hallmark of tumor biology, including
tumor dynamics, migration, and invasion. In the particular case
of GBM, heterogeneity is present at the anatomical, histological,
functional, molecular, vascular, and immune levels. The complex
spatiotemporal structure of brain tumors is likely a major
contributor to the difficulties of treating these tumors since
treatments may not be equally effective across heterogeneous
tumor areas. The presence of heterogeneity means that
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treatments should be tailored to target microenvironments, since
the tumor cell characteristics and their microenvironments vary by
tumor location. However, it has been difficult to factor tumor
heterogeneity into treatment design.

Heterogeneity in the extracellular matrix, tumor dynamics, and
immune compartments are current areas of active research, as these
determinants of tumor growth and treatment resistance have not
been given adequate consideration so far. For example, the role of
collagen in brain tumor growth remains poorly understood, as are
the factors that render these tumors resistant to immunecheckpoint
inhibitors. Equally, the dynamic nature of these tumors has
consequences for our understanding of tumor invasion into
healthy brain, and the interactions of immune cytotoxic
lymphocytes with tumor cells. The invasive areas of the tumor
border are also highly variable, demonstrating that heterogeneity
needs to be considered across all tumor locations. Invasion is the
major determinant of tumor progression and patient death,
highlighting the importance of characterizing its histological,
functional, molecular, vascular, and immune heterogeneity across
the temporal spectrum. We predict that future therapeutic
approaches will need to be effective across different tumor areas,
spatially, functionally, and molecularly, to improve the overall
treatment efficacy for GBM.
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