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However, the majority of pituitary adenomas do not secrete 
hormones (i.e., non-functioning) and are either incidentally 
discovered or present with symptoms of local mass effect 
on the optic apparatus, resulting in vision loss. Magnetic 
resonance imaging (MRI) is the primary imaging modality 
for diagnosing pituitary adenomas and is critical for guiding 
management decisions, evaluating treatment response, and 
long-term surveillance [2, 3].

Unfortunately, MRI-based diagnosis of pituitary adeno-
mas remains a major challenge [4]. Complex normal pitu-
itary anatomy, including different radiographic features 
between the anterior and posterior pituitary gland, makes 
distinguishing normal from pathologic features challeng-
ing. Pregnancy, puberty, medications, and aging are a few 

Introduction

The pituitary gland is the central regulatory endocrine gland 
of the human body, controlling all the major hormonal axes. 
Primary tumors of the pituitary gland, or pituitary adeno-
mas, are among the most common brain tumors, with an 
estimated incidence of 10–30% in the general population [1]. 
Some pituitary adenomas secrete abnormally high amounts 
of normal stimulatory hormones (i.e., functioning adeno-
mas) and account for a variety of endocrinopathies (most 
commonly Cushing’s disease and gigantism/acromegaly). 
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Purpose  The estimated incidence of pituitary adenomas in the general population is 10–30%, yet radiographic diagnosis 
remains a challenge. Diagnosis is complicated by the heterogeneity of radiographic features in both normal (e.g. complex 
anatomy, pregnancy) and pathologic states (e.g. primary endocrinopathy, hypophysitis). Clinical symptoms and laboratory 
testing are often equivocal, which can result in misdiagnosis or unnecessary specialist referrals. Computer vision models can 
aid in pituitary adenoma diagnosis; however, a major challenge to model development is the lack of dedicated pituitary imag-
ing datasets. We hypothesized that deep volumetric segmentation models trained to extract the sellar and parasellar region 
from existing whole-brain MRI scans could be used to generate a novel dataset of pituitary imaging.
Methods  Six open-source whole-brain MRI datasets, created for research purposes, were included for model development. 
Deep learning-based volumetric segmentation models were trained using 318 manually annotated MRI scans from a single 
open-source MRI dataset. Out-of-distribution volumetric segmentation performance was then tested on 418 MRIs from five 
held-out research datasets.
Results  On our annotated images, agreement between manual and model volumetric segmentations was high. Dice scores 
(a measure of overlap) ranged 0.76–0.82 for both in-distribution and out-of-distribution model testing. In total, 6,755 MRIs 
from six data sources were included in the final generated pituitary dataset.
Conclusions  We present the first and largest dataset of pituitary imaging constructed using existing MRI data and deep 
volumetric segmentation models trained to identify sellar and parasellar anatomy. The model generalizes well across patient 
populations and MRI scanner types. We hope our pituitary dataset will be an integral part of future machine learning research 
on pituitary pathologies.
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examples of normal states that can result in aberrant pitu-
itary gland anatomy and lead to false-positive pituitary 
adenoma diagnosis. Conversely, many functioning pitu-
itary adenomas are small, measuring less than 5 mm, and 
share similar radiographic features with the normal pitu-
itary glands, leading to false-negative diagnoses [5]. These 
diagnostic challenges invite an innovative computer-aided 
diagnostic solution for improved detection and monitoring 
of pituitary adenomas.

Machine learning techniques are increasingly being 
developed for the diagnosis and study of medical, neuro-
logical, and endocrine disorders [6–8]. As machine learn-
ing becomes democratized and computational resources 
are increasingly available, the barrier to adopting machine 
learning in medicine frequently becomes the availability 
of large, high-quality datasets [9]. While these datasets are 
beginning to emerge for some diseases and imaging modali-
ties (e.g., pneumonia/chest radiographs, dementia/brain 
MRI), for many disorders the datasets do not yet exist. We 
hypothesized that a large dataset of pituitary glands could 
be constructed from a diverse group of patients by apply-
ing deep learning-based volumetric segmentation models 
to existing open-source MRI datasets. Here, we discuss our 
approach towards using computer vision to algorithmically 
create a novel open-source brain MRI dataset and then pres-
ent and characterize the world’s largest dataset of pituitary 
and sellar region imaging. We conclude by discussing the 
application of this dataset to future studies of pituitary ade-
nomas and endocrine disorders.

Methods

We identified multiple large open-source brain MRI datas-
ets created for research purposes in neurological diseases. 
We included all studies that contained the brain and cranial 
base. Our whole-brain MRI data sources and collection 
process are described in the Data sources section below 
and illustrated in Fig. 1. Our segmentation model training 
and pituitary extraction process are described in the Model 
architectures and training section and illustrated in Fig. 2.

Data sources

We identified six open-source whole-brain MRI datasets for 
inclusion into our master pituitary dataset, representing a 
diverse set of patient characteristics, demographics, scanner 
technologies, and imaging sequences. All datasets are avail-
able from the Laboratory of NeuroImaging (LONI) Image 
& Data Archive [10]. These component datasets are:

ABIDE(n = 1157) The Autism Brain Imaging Data 
Exchange [11].

The ABIDE initiative has aggregated functional and 
structural brain imaging data from more than 24 international 
brain imaging laboratories around the world to accelerate 
the understanding of the neural bases of autism. This dataset 
includes data from those diagnosed with autism spectrum 
disorder and matched healthy controls. The median patient 
age is 14.7 years, with an age range of 7–64 years.

Fig. 1  Data sources. Datasets are publicly available from the Laboratory of Neuro Imaging  (LONI) [10]. We included the T1-weighted MR 
sequences in the component datasets with slice thickness < 3 mm to capture several slices of the pituitary gland. The inclusion criteria are further 
described in the Methods section
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ABVIB(n = 778) The Aging Brain: Vasculature, Isch-
emia, and Behavior Study.

The primary goal of ABVIB is to assess the contribu-
tions of cardiovascular risk factors (laboratory studies) 

and cerebrovascular disease (carotid intima-media thick-
ness and retinal vessels) to brain structure and function. 
Launched in 1994, data from a second study cohort was 
started in 2008–2013 and is included in the current database. 

Fig. 2  (a) Pituitary extraction. The process of generating a pituitary image involves: (i) applying a standard pre-processing pipeline to the whole-
brain MRI input, (ii) applying a set of UNET-based segmentation models to output binary segmentation maps corresponding to the pituitary region 
of interest, (iii) combining the individual segmentation maps via a standard post-
 processing pipeline, and (iv) cropping the original whole-brain MRI to the region indicated by the
 combined segmentation map. (b) Training loss functions. The process of training a model requires a loss function to quantify the model’s predic-
tion error, so that this error can be minimized. The BCE loss function maximizes the probability of correctly classifying each pixel as being in the 
background (class = 0) or pituitary ROI (class = 1). The Dice loss function maximizes the overall overlap between the predicted and pituitary ROI. 
False positive, false negative, true positive, and true negative are abbreviated FP, FN, TP, and TN, respectively
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images were likely to have poor coverage of the pituitary 
gland.

Training/Valid/Test data

The pituitary region of interest (ROI) was manually anno-
tated in order to generate the “gold standard” ground truth 
labels needed for model training and evaluation. Our pitu-
itary ROI included a margin around the pituitary gland, 
including the sellar and parasellar regions, to include areas 
of potential involvement with large pituitary pathology. 
Methodologically, the ROI was demarcated in 3DSlicer [16] 
based on anatomical boundaries. The cavernous sinuses 
served as the lateral boundaries. Inferior to superior, we 
included the region between the bottom of sella/mid-clivus 
to above the optic chiasm. Anterior to posterior, we included 
the region between the mid-planum sphenoidale to the ante-
rior pons.

We labeled 333 scans from the ABIDE component 
dataset, which we split into a 60:20:20 train/valid/test set 
(201/66/66). We trained our pituitary ROI segmentation 
models only on ABIDE data. To evaluate model perfor-
mance in response to distribution shift and real-world gen-
eralization across different patient populations and imaging 
systems, we annotated a number of ground truth labels 
from each of the other component datasets (Table 1). These 
out-of-distribution labels were used only in evaluating the 
model and were not part of the training process.

Model architectures and training

We trained six different model architectures available from 
the MONAI framework [17] and from open-source Github 
repositories in order to find the best-performing architecture 
or ensemble of architectures for our task.

Participants represent a spectrum of vascular risk and cogni-
tive impairment.

ADNI(n = 2294) The Alzheimer’s Disease Neuroimaging 
Initiative [12].

ADNI is a longitudinal multicenter study designed to 
develop clinical, imaging, genetic, and biochemical bio-
markers for the early detection and tracking of Alzheim-
er’s disease (AD). Specifically, we included scans from 
ADNI1:Complete 1Yr 1.5T collection, which included par-
ticipants with mild cognitive impairment (MCI), AD, and 
elderly controls.

AIBL(n = 1911) Australian Imaging Biomarkers and 
Lifestyle Study of Ageing [13].

AIBL is a large-scale (1,000 + participant) cohort study 
of cognition with a focus on discovering the biomarkers and 
lifestyle factors linked to the subsequent development of 
Alzheimer’s disease. Minimum participant age is 60 years, 
and the study includes data from patients with AD, MCI, 
and healthy volunteers.

PPMI(n = 1524) Parkinson’s Progression Markers Ini-
tiative [14].

PPMI is a large-scale longitudinal observational multi-
center study aggregating clinical data, imaging data, and 
biologic samples to establish markers of disease progres-
sion in Parkinson’s disease (PD). Participants include 
1,400 + individuals at 33 clinical sites in 11 countries, repre-
senting de novo Parkinson’s, control volunteers, and at-risk 
populations.

ICBM(n = 724) International Consortium for Brain 
Mapping [15].

The purpose of ICBM is to create a human brain atlas 
based on an average space constructed from the average 
position, orientation, scale, and shear from all the individual 
subjects. The data were collected from three North Ameri-
can sites, representing 850 normal adult subjects ranging in 
age from 18 to 90 years.

Inclusion criteria

Our unified “master” dataset included the T1-weighted 
MR sequences in the component datasets with slice thick-
ness < 3 mm to capture several slices of the pituitary gland. 
We chose the T1-weighted sequence as it was the most fre-
quent sequence across our datasets and best captures ana-
tomical features. Our formal inclusion criteria for studies 
were: (1) “T1” or “MPR” in the file name path and (2) 100–
300 slices. In cases where the MRI sequence type was not 
available in the metadata, we used the filename as a proxy 
if appropriate. Likewise, we used the number of slices as a 
proxy for slice thickness as sequences with fewer than 100 

Table 1    Manual annotations. Annotated scans in ABIDE were split 
into a 60:20:20 train/valid/test set. Annotated scans from the other five 
datasets were used solely as a test set to evaluate model generalizabil-
ity to new datasets and different patient populations.
Dataset Scans Labels
ABIDE 1050 333 (201/66/66)
ABVIB 403 92
ADNI 2294 90
AIBL 1300 89
PPMI 1362 95
ICBM 346 52
Total 6755 751
Annotated scans in ABIDE were split into a 60:20:20 train/valid/test 
set. Annotated scans from the other five datasets were used solely as 
a test set to evaluate model generalizability to new datasets and dif-
ferent patient populations
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models with OBELISK layers can include significantly 
fewer parameters, enabling us to experiment with larger 
dimensions as model input. We tested two OBELISKHY-
BRID models, OBELISK 96 and OBELISK 144.

CONDSEG: We implemented CONDSEG using MONAI’s 
UNET architecture. The Conditional Segmentation model 
[27] is a UNET model modified to take in 3-channel input: 
the input scan, in addition to a randomly selected (atlas, 
atlas label) scan. In contrast to the above approaches, the 
model’s task is now a hybrid of image registration and ROI 
propagation.

In addition to the above models, we also evaluated the 
model ensemble comprised of the three best-performing 
model architectures on the test set, namely, UNET3D, 
VNET, and CONDSEG. We evaluated three different 
ensemble models, corresponding to:

	● Ensemble BCE: UNET3D + VNET + CONDSEG 
ensemble trained with BCE loss.

	● Ensemble DICE: UNET3D + VNET + CONDSEG 
ensemble trained with DICE loss.

	● Ensemble Combined: Ensemble BCE + Ensemble 
DICE (six models total, three trained with BCE loss and 
three with DICE loss).

Pre-processing pipeline

Our pre-processing/data augmentation pipeline included: 
(1) performing N4 bias correction, (2) re-orienting to a stan-
dard MRI orientation (LAS orientation), (3) standard isotro-
pic spacing, (4) intensity normalization (scaling the voxel 
intensity values by the mean and standard deviation of the 
non-zero pixels), (5) random affine transformation with 
probability 0.5, and (6) center cropping to a pre-specified 
spatial dimension.

Inputs to all models except OBELISK 144 were resa-
mpled to standard isotropic spacing of 1.5 mm and center 
cropped to a standard dimension of 96 × 96 × 96 voxels. We 
took advantage of the parsimonious OBELISK architecture 
to evaluate the effect of higher-resolution inputs: Inputs to 
OBELISK 144 were resampled to standard isotropic spacing 
of 1.0 mm and were center cropped to a standard dimension 
of 144 × 144 × 144 voxels. We used the SimpleITK library 
[28, 29] to perform the N4 bias correction and orientation 
to LAS coordinates. The remaining transformations were 
performed using MONAI’s Transform library.

Our primary performance metric was the Dice score, a 
measure of overlap between the algorithm-generated seg-
mentation and the provided manual annotation. The Dice 
score ranges from 0 (no overlap) to 1 (100% overlap). It is 
equivalent to the F1 score, a measure of classification accu-
racy defined as the harmonic mean of precision (positive 
predictive value) and recall (sensitivity).

The process of training a model requires a loss function 
to quantify the model’s prediction error, so that this error 
can be minimized. The choice of loss function is important, 
as it influences the accuracy and generalizability of the solu-
tion reached from the initial start point (initializations are 
randomly generated).

We trained each model architecture twice: once with a 
standard loss function that can be easily optimized - binary 
cross-entropy loss (BCE loss) - and once with Dice loss 
(DICE loss). The Dice loss forces the model maximize the 
Dice score. The BCE loss function forces the model to max-
imize the probability of correctly classifying each pixel as 
being in the background (class = 0) or part of the pituitary 
ROI (class = 1). BCE is the standard loss function used for 
binary segmentation problems.

We thus evaluated the effect of the loss function on 
model performance and robustness to out-of-distribution 
datasets. Additionally, in order to evaluate the reproduc-
ibility of model performance on the test set, we re-ran the 
experiment 10 times starting from ten independent random 
initializations.

The following model architectures were trained:

UNET3D  The UNET architecture is the standard architec-
ture for image segmentation tasks [18–22]. We implemented 
a 3-dimensional UNET using MONAI’s UNET architecture 
[23] with standard parameters.

VNET  The VNET architecture is a UNET variant introduced 
specifically for medical image segmentation tasks [24]. We 
leveraged MONAI’s VNET with the same default param-
eters as for UNET3D.

UNETR  This latest addition to the MONAI neural network 
library is a vision transformer model. This model had the 
highest Dice scores of any other MONAI model when tested 
on the image segmentation task in the Medical Segmenta-
tion Decathlon dataset [25].

OBELISKHYBRID  Our OBELISKHYBRID implementation 
is based on the code in the Github repository [26]. OBE-
LISKHYBRID is a UNET-based model that incorporates 
OBELISK layers into traditional UNET architecture [26]. 
Because the OBELISK kernel decouples the effective recep-
tive field from the number of levels in the UNET encoder, 
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80% (Fig. 3). While the ensemble model performed simi-
larly in terms of mean Dice score, ensembling resulted in 
fewer outliers than the individual component models. Over-
all, the best model is Ensemble DICE, which is the Ensem-
ble model of UNET3D + VNET + CONDSEG trained with 
DICE loss. We used Ensemble DICE as our final model to 
generate our pituitary master dataset.

Robustness to distribution shift

We evaluated model performance on each component data-
set separately (Fig.  4). With the exception of OBELISK 
144, all models, including OBELISK 96, appear to be 
robust to out-of-distribution data, with similar performance 
on the ABIDE test set and on the test cases from the five 
out-of-distribution datasets (ABVIB, ADNI, AIBL, PPMI, 
ICBM). Notably, the OBELISK 144 model appears to over-
fit the dataset on which the model was trained (ABIDE) and 
suffers a performance drop in generalizing to other datasets. 
While we do not have an explanation for this, the result was 
reproducible.

Performance reproducibility

The consistency of each model’s test set performance across 
ten random initializations is shown graphically in Fig. 5 and 
numerically in Table  2. The UNET3D, CONDSEG, and 
Ensemble models demonstrate high reproducibility (low 
variability) in the mean test set Dice score. Notably, with 
the exception of UNETR, models trained with DICE loss 
have higher average Dice scores and lower standard devia-
tion than models trained with BCE loss, suggesting that they 
consistently converge to better optima than models trained 
with BCE loss. The exception is UNETR; however, UNETR 
performed significantly worse than other models, perhaps 
because vision transformer models require more training 
data to converge due to less inductive bias.

Table 2 is a granular version of Fig. 5, illustrating that 
generalization performance on out-of-distribution datasets 
was also reproducible, with similar model performance 
between component datasets that was consistent (low stan-
dard deviation across 10 runs). Notably, the Ensemble DICE 
model performed well on the individual datasets and was 
the best-performing model on the test set overall.

Error analysis

Finally, we performed an error analysis to evaluate our pro-
posed volumetric pituitary segmentation model. We visually 

Data augmentations

In addition to the above pipeline, we experimented with 
increased data augmentation in order to enhance our mod-
el’s robustness and generalizability to out-of-distribution 
datasets. Specifically, we experimented with adding random 
intensity shifts and scaling, random Gaussian noise, random 
contrast adjustment, and random flips along spatial axes. 
However, we omit these results here as increased data aug-
mentation did not significantly improve model performance.

Post-processing pipeline

Each machine learning model outputs a binary segmenta-
tion map, with 0 and 1 used to classify pixels in the back-
ground and in the pituitary region of interest, respectively. 
We post-processed the binary segmentation output to keep 
only the largest connected component.

In addition, to maintain consistency in evaluating across 
models, we resampled the OBELISK 144 model output 
to 1.5-mm isotropic voxel spacing and we center-cropped 
the output to the 96 × 96 × 96 dimensions, thus matching 
the statistics of the other model outputs. In our ensemble 
model, we output the binary segmentation corresponding to 
the majority vote among individual binary predictions (ties 
are by default labeled 0, i.e., not part of the ensemble algo-
rithm’s predicted pituitary ROI).

Results

We present model results with respect to overall perfor-
mance, robustness to distribution shift, and performance 
reproducibility. In the Supplemental Information section, 
we present results regarding the similarity between mod-
els trained with different loss functions and architectures 
as well as the auto-similarity resulting from re-training the 
same model architecture and loss function from multiple 
random initializations (Supplementary Fig.  1 and Supple-
mentary Fig. 2).

Overall performance

We evaluated the overall performance of our individual and 
ensemble models on our collective test set of 484 annotated 
scans (66 test cases from ABIDE, 414 test cases from the 
other datasets, see Table 1).

Of the six individual models, UNET3D, VNET, and 
CONDSEG trained with DICE loss performed the best on the 
collective test set, achieving Dice scores of approximately 
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machine learning models to localize ACTH-secreting micro-
adenomas within the pituitary gland [30]. Complementary 
research has demonstrated the ability of machine learning to 
subtype pituitary adenomas as growth hormone or prolac-
tin-secreting based on imaging alone [31]. Yet the ability of 
machine learning to classify and lateralize ACTH-secreting 
microadenomas has remained an open research question 
due to the lack of training data.

Additionally, for the benefit of the wider research com-
munity, we have publicly released our trained ensemble 
model with a detailed code walkthrough on model infer-
ence: github.com/RGologorsky/PituitaryGenerator.

Our approach towards algorithmically extracting novel 
datasets for medical image classification using weak anno-
tations and volumetric semantic segmentation combined 
with open-source medical datasets can be applied to any 
number of biomedical organ systems or diseases. For exam-
ple, the National Lung Screening Trial’s 26,000 + patients 
have, in addition to their lung tumors, a vast amount of rela-
tively normal pulmonary, cardiac, thoracic spine, and other 
imaging. An approach similar to ours is feasible to generate 
massive datasets of normal images of other intra-thoracic 
structures for subsequent normal samples or studies of the 
variation of normal structures at a population scale.

A notable challenge to the approach outlined here is 
the necessity of the computer vision algorithm to gener-
alize from the dataset it was trained on to other datasets. 

inspected our Ensemble DICE model’s three worst pituitary 
region segmentations, shown in Fig. 6. We discovered that 
the segmentation with the lowest Dice score, 0.41, was 
due to an annotation error, wherein the pituitary ROI was 
enlarged. In the next two poor segmentations, with Dice 
scores of 0.59, the error was in segmenting the periphery. 
However, the pituitary gland itself was always correctly 
segmented.

In comparison, for the best 3 segmentation instances, the 
Dice score was approximately 90%. As a further check on 
average model performance, we visually inspected our algo-
rithm’s segmentations on a randomly selected test item from 
each component dataset, as can be seen in Fig.  7. These 
visual inspections enable us to say that our model’s segmen-
tations do not appear systematically biased, an error that 
could have been masked by looking at Dice scores alone.

Discussion

We present the world’s largest dataset of pituitary imaging 
constructed entirely using existing open-source datasets 
and deep volumetric segmentation computer vision mod-
els trained to recognize the normal sellar and parasellar 
anatomy. Our aim is to use this dataset of relatively normal 
imaging to investigate the classification of pituitary pathol-
ogy, and to generate a normal control group for training 

Fig. 3  Overall model performance. Each model was trained twice: once with DICE loss, once with BCE loss. We evaluated the ensemble of the 
three best models: UNET3D + VNET +
 CONDSEG, trained with the specified loss type: BCE, DICE, or both combined. The Ensemble
 models, particularly Ensemble DICE, had fewer outliers

 

1 3

848



Pituitary (2022) 25:842–853

open-source MRI data using deep volumetric segmentation 
computer vision models. This is the first and largest dataset 
of endocrine and pituitary imaging and will provide a set of 
useful normal control for future pituitary and neuro-endor-
cine research.
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DICE_loss 80.3 ± 5.1 79.5 ± 6.7 77.7 ± 6.8 76.4 ± 7.9 79.8 ± 5.9 81.6 ± 4.5 79.3 ± 6.5
OBELISK 96 BCE_loss 78.4 ± 7.0 74.6 ± 8.8 59.2 ± 18.7 67.4 ± 21.1 71.2 ± 13.0 75.7 ± 8.1 71.7 ± 14.7
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Model performance was defined as the mean Dice score of the model’s predictions over the specified test set. To assess performance reproduc-
ibility, each model was evaluated ten times (i.e., trained after ten different initializations of the same model architecture). The Ensemble DICE 
model performed well on the individual datasets and was the best-performing model on the test set overall

Fig. 5  Average model performance over 10 runs. Model performance was defined as the mean Dice score of the model’s predictions over the 
test set. To assess performance reproducibility, each model was evaluated ten times (i.e. trained after ten independent initializations of the same 
model architecture). The Ensemble models performed best and their performance demonstrated high reproducibility
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