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Abstract

Accurate histopathologic diagnosis is essential for providing
optimal surgical management of pediatric brain tumors. Current
methods for intraoperative histology are time- and labor-inten-
sive and often introduce artifact that limit interpretation. Stim-
ulated Raman histology (SRH) is a novel label-free imaging
technique that provides intraoperative histologic images of fresh,
unprocessed surgical specimens. Here we evaluate the capacity of
SRH for use in the intraoperative diagnosis of pediatric type brain
tumors. SRH revealed key diagnostic features in fresh tissue
specimens collected from 33 prospectively enrolled pediatric type
brain tumor patients, preserving tumor cytology and histoarch-
itecture in all specimens. We simulated an intraoperative consul-
tation for 25 patients with specimens imaged using both SRH and
standard hematoxylin and eosin histology. SRH-based diagnoses
achieved near-perfect diagnostic concordance (Cohen's kappa, « >

Introduction

Accurate histopathologic diagnosis is essential for providing
optimal surgical management of pediatric brain tumors. Intrao-
perative decision-making and surgical goals diverge depending on
tumor pathology. The current standard of care for intraoperative
diagnosis includes frozen sectioning and cytologic preparations
performed by skilled technicians and pathologists working in
dedicated surgical pathology laboratories with complex infra-
structure (1). The current time- and labor-intensive workflow of
intraoperative pathology results may delay diagnosis and surgical
care. Moreover, current histologic methods may introduce artifact
that limits interpretation if additional tissue is not provided.
Furthermore, cryostat preparation consumes tissue that may be
essential for arriving at a final diagnosis.
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0.90) and an accuracy of 92% to 96%. We then developed a
quantitative histologic method using SRH images based on rapid
image feature extraction. Nuclear density, tumor-associated mac-
rophage infiltration, and nuclear morphology parameters from
3337 SRH fields of view were used to develop and validate a
decision-tree machine-learning model. Using SRH image features,
our model correctly classified 25 fresh pediatric type surgical
specimens into normal versus lesional tissue and low-grade versus
high-grade tumors with 100% accuracy. Our results provide
insight into how SRH can deliver rapid diagnostic histologic data
that could inform the surgical management of pediatric brain
tumors.

Significance: A new imaging method simplifies diagnosis and
informs decision making during pediatric brain tumor surgery.
Cancer Res; 78(1); 278-89. ©2017 AACR.

Alternatives to standard hematoxylin and eosin (H&E) histol-
ogy for intraoperative pathology have been proposed (2-4) but
have yet to be adopted given their limitations. An ideal method for
intraoperative histology would rapidly deliver diagnostic histo-
logic images within a streamlined workflow requiring minimal
tissue preparation. Such an imaging system would enable (i)
prompt and accurate histopathologic diagnosis and (ii) serial
specimen processing for detection of residual tumor burden. With
residual tumor burden being a major modifiable risk factor in
common pediatric brain tumors (5-9), evaluation of tissue with-
in the resection cavity could allow for greater extent of resection
and improve overall survival.

Stimulated Raman scattering (SRS) microscopy creates the
possibility of rapid, label-free, high-resolution microscopic imag-
ing of unprocessed surgical tissues (10-12). SRS microscopy
yields histologic images using the intrinsic vibrational properties
of biological macromolecules, such as lipids, proteins, and DNA.
Clinical SRS microscopy relying on fiber-laser technology and a
virtual H&E color scheme, called stimulated Raman histology
(SRH), has recently been shown to provide histopathologic
images comparable to conventional histology in a series of
neurosurgical specimens (13). Previous investigations were
proof-of-concept studies that focused on the feasibility of using
machine-learning techniques for SRH-based diagnosis in the
adult population. These previous machine-learning classification
methods were tailored for adult brain tumor pathologies and
lacked sufficiently model interpretability to translate to pediatric
brain tumors. Brain tumors that predominate in the pediatric
population, such as pilocytic astrocytomas, ependymomas, and
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embryonal tumors, have unique histologic features that represent
a distinct diagnostic challenge both for neuropathologists and
computer aided-diagnostic strategies. Moreover, differentiating
between low-grade and high-grade tumors (e.g., ependymomas,
WHO grade II, vs. medulloblastomas, WHO grade IV) has a major
impact on decision-making during surgery and is essential for
establishing optimal surgical management (5-9). To date, the
potential for SRH to impact the surgical care of pediatric patients
has not been rigorously evaluated.

Here, we evaluate the ability of SRH to provide rapid and
diagnostic histologic images for pediatric type brain tumors. We
demonstrate that SRS microscopy is indeed an effective system for
intraoperative histology and eliminates freezing artifact, section-
ing, and staining. Accurate diagnosis of pediatric brain tumors is
facilitated through SRH as it preserves both cytologic and his-
toarchitectural features of fresh tumor specimens. We report a
novel quantitative image-processing method that extracts key
histopathologic features in neoplastic tissues capable of assisting
rapid detection of residual tumor burden and tumor grading
based on SRH image feature extraction. Quantitative feature
attributes from SRH images were then used to develop and
validate a machine-learning model to deliver rapid, automated
classification of neoplastic tissue and tumor grade, thereby assist-
ing tumor resection and establishing optimal surgical goals. In
summary, our data indicate that SRH holds promise for improv-
ing the surgical care of pediatric type brain tumors.

Patients and Methods

Study design

The study was approved by the University of Michigan Insti-
tutional Review Board (HUMO00083059). Patient studies were
conducted in accordance with the Declaration of Helsinki, Inter-
national Ethical Guidelines for Biomedical Research Involving
Human Subjects (CIOMS), Belmont Report and U.S. Common
Rule. Patients were prospectively enrolled for 24 months with the
following inclusion criteria: (i) male and female subjects under-
going brain tumor resection at the University of Michigan Health
System, (ii) subject or medical decision maker was able to provide
informed written consent and (iii) subjects in whom there was
excess tumor tissue beyond what was needed for routine diag-
nosis. All patients 18 years or younger were included in the
study preoperatively. Patients older than 18 years were enrolled
postoperatively if they were diagnosed with pediatric type pathol-
ogies to increase study enrollment and ensure a patient cohort
of representative pediatric type histology, including pilocytic
astrocytoma, ependymoma, medulloblastoma and other embry-
onal tumors, ganglioglioma, diffuse midline glioma, hemangio-
blastoma, choroid plexus papilloma, chordoma, and germinoma.
The list of pediatric type pathologies was provided by our
expert panel of neuropathologists (S. Camelo-Piragua, A.P.
Lieberman, K.A. McFadden). Normal/non-neoplastic specimens
were taken from a cohort of adult epilepsy and brain tumor
patients. The primary goals of the investigation were to (i)
establish SRH as a feasible method for obtaining histopathologic
diagnosis in tumors common in the pediatric population and (ii)
develop a machine-learning method using quantitative SRH
image features to provide rapid, automated detection of lesional
tissue and tumor grade. Patients were recruited consecutively at a
high-volume, tertiary-care hospital to obtain a representative
sample of pediatric type brain tumors. All collected specimens
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were imaged immediately after removal with our clinical
fiber-laser-based SRS microscope (13). A board-certified neuro-
pathologist (A.P. Lieberman) reviewed all images from both
standard intraoperative pathology and SRH to determine ade-
quacy and classify each specimen following the current World
Health Organization (WHO) diagnostic classification criteria
(14). We then implemented a web-based survey with three
neuropathologists (S. Camelo-Piragua, K.A. McFadden, M.
Snuderl) to determine the diagnostic concordance and accuracy
of SRH compared to standard intraoperative H&E histology. To
develop a quantitative histology, we used CellProfiler for image
feature extraction (15). Image features were then used to develop
and validate a random forest machine-learning method to
provide automated classification of lesional tissue (i.e., normal
vs. lesional) and tumor grade (i.e., low grade vs. high grade).

Tissue collection and intraoperative SRH

Following standard operative procedures, neurosurgeons
(D.A. Orringer, C.O. Maher, H.J.L. Garton, K.M. Muraszko)
removed lesional tissue. Specimens were then split by the neuro-
surgeon with equal halves sent for intraoperative pathology and
for SRH. Standard intraoperative pathology included cytologic
preparation and frozen sectioning. To image fresh surgical speci-
mens using the clinical SRS microscope, a small (approximately,
3 x 3 x 3 mm or 27 uL) unprocessed and unlabeled specimen
was placed on a standard uncoated glass slide covered with a
cover slip. Using custom imaging programs in p-Manager and
Image] software, 400 x 400-um images from two SRS channels,
2845 cm™' (CH,/lipid channel) and 2930 cm™' (CHj/protein
channel) Raman shift wavenumbers, were obtained in a raster
fashion. A mosaic image with automated image stitching was
completed to obtain wider fields of view (FOV). In addition to
2,845and 2,930 cm ™! channel grayscale images, virtual H&E color
scheme was used for histopathologic diagnosis (Fig. 1; ref. 13).

Survey methodology

The web-based survey consisted of 25 cases, including 20
pediatric type brain tumors and 5 normal specimens from epi-
lepsy operations. The survey was given to three blinded neuro-
pathologists (S. Camelo-Piragua, K.A. McFadden, M. Snuderl). All
cases included both SRH and conventional H&E histology (frozen
sections and cytologic preparations), which were admixed
and presented in random order. To simulate an intraoperative
consultation, a short clinical narrative that included age group,
sex, presenting symptoms, and tumor location accompanied
each image. Responses were then scored for concordance and
accuracy on the following three levels: (i) lesional versus nonle-
sional tissue for all specimens, (ii) high-grade versus low-grade
pathology for tumor specimens, and (iii) diagnostic interpreta-
tion for all specimens. The clinical intraoperative pathologic
diagnosis provided at the time of surgery was considered the
"ground truth." Final WHO cdlassification diagnoses using per-
manent sections were also recorded to document any discrepan-
cies between intraoperative and final pathologic diagnosis; none
were identified upon the review of our supervising neuropathol-
ogist (A.P. Lieberman). Diagnostic concordance was determined
based on equivalent survey responses for H&E pathology and
SRH images (survey-to-survey comparison). Diagnostic accuracy
was determined by comparing the survey responses to the Uni-
versity of Michigan Health System diagnosis (survey-to-truth
comparison).
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CH, Raman shift (2845 cm™')
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CH, Raman shift (2930 cm™)

Figure 1.

CH, - CH, image subtraction

Green:CH,  Blue: CH,-CH, Stimulated Raman histology

Label-free SRH of fresh brain tumor tissue. A choroid plexus papilloma, WHO grade |, imaged at 2,845 cm~' (A) and 2,930 cm™' (B) Raman shift
wavenumbers with 400 x 400-um FOV at a rate of 2 seconds per frame. C, To highlight nuclear contrast, 2,930 cm~' image was substracted from the 2,845 cm™
image inasingle post-processing. D, Two-channel blue-green image was generated by assigning blue gradient to the 2,930 to 2,845 cm™' pixel intensity and green to
the 2845 cm ™' pixel intensity. Our H&E color lookup table was applied to produce SRH (E) to emulate standard H&E staining of frozen (G) and formalin-fixed, paraffin-
embedded (H) sections. F, SRH mosaics were created by automated stitching of individual SRH tiles (dashed square). Scale bars, 100 um.

Digital image processing of SRH images for quantitative
histology

To extract histologic features from SRH images, we used Cell-
Profiler, an automated image analysis application for measuring
cellular phenotypes in biological images (15). Three main histo-
logic features were used for digital image analysis: (i) nuclear
density, (ii) tumor-associated macrophage (TAM) density, and
(iii) nuclear morphology. These image features were selected
because they represent known histopathologic changes that occur
in neoplastic tissues and because SRH is amenable to extracting
these image features. A CellProfiler pipeline was developed using
the two SRS image channels for parallel processing of both tumor/
normal cell nuclei (2,930-2,845 cm™" subtracted image) and
TAM (2,845 cm™! image) segmentation. To glean information
about nuclear anaplasia, a feature of neoplastic, aberrant differ-
entiation, and growth, we used 11 nuclear morphology para-
meters (area, perimeter, eccentricity, minimum feret diameter,
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maximum feret diameter, compactness, solidity, form factor,
extent, orientation, maximum radius) to quantify the shape and
size of segmented nuclei. Features were extracted from each 400 x
400-pm SRH FOV. Nuclear and TAM density were calculated as
raw counts for each FOV. Nuclear morphology measures were
calculated for each segmented cell, and then averaged over each
field of view for further analysis. A detailed description of our
CellProfiler pipeline modules can be found in Supplementary
Table S1.

Machine-learning model for automated histopathologic
classification

Arandom forest model was used to conduct decision tree-based
supervised machine learning on SRH image features in order to
rapidly identify residual tumor and malignant tissue (16). A
random forest machine-learning technique was chosen for model
performance and interpretability. Random forest model was built
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and validated using R version 3.3.1. Package "randomForest" was
used for rapid implementation of random forest and recursive
partitioning algorithms. Model training and cross-validation was
conducted using the "caret" package. Out-of-bag accuracy was
used for model optimization and to select the highest performing
mtry hyperparameter. Number of trees to grow was set at 500.
Node impurity was measured by the Gini index.

Twenty-five SRH mosaic images/specimens were selected by
our supervising neuropathologist (A.P. Lieberman) to be includ-
ed for the development and validation of two random forest
models: Model (i) differentiates normal versus lesional tissue and
model (ii) differentiates low-grade versus high-grade tissue.
Image tiles within a mosaic that did not contain tissue were
excluded. The same extracted image feature data were used for
both random forest models as described above. Because of
restricted sample size, model evaluation was achieved using
10-fold cross-validation completed independently for each mod-
el. Each model's performance was evaluated on two levels: (i) SRH
FOV/tile (400 x 400-um) level and (ii) SRH mosaic level. Model 1
contained 1,780 SRH FOVs and model 2 contained 1,557 SRH
FOVs. Because model predictions occurred at the SRH FOV level,
we implemented a FOV-based modal approach to scale the model
predictions to the mosaic level. The most common, or modal,
predicted FOV class was assigned to the mosaic as a whole. A
modal-predicted approach allows for the most represented his-
topathology within an SRH mosaic to provide the mosaic-level
classification.

Statistical analysis

For each pathologist, we calculated Cohen's kappa statistic for
normal versus lesional, low-grade versus high-grade, and diag-
nostic class to determine concordance between SRH and H&E
histology (17). This analysis provides information on how well
SRH and H&E agree. Cohen's kappa was also calculated for SRH
versus truth and for H&E versus truth. This analysis provides
information on how well each pathologist was able to detect the
truth from SRH and H&E histology (intrarater accuracy). Seven
diagnostic classes were included for analysis: embryonal tumors
(6), normal/non-neoplastic (5), pilocytic astrocytoma (5), cir-
cumscribed glioma/glioneuronal tumor (4, including ganglio-
glioma, pleomorphic xanthoastrocytoma, and angiocentric glio-
ma), ependymoma (2), other (2, including germinoma and
hemangioblastoma), and diffuse midline glioma (1). Finally, we
calculated the reliability among the three pathologists using
Fleiss' kappa statistic (interrater accuracy) (18).

For comparing the quantitative image features between normal
tissue, low-grade tumors, and high-grade tumors, ANOVA testing
was used to compare feature means. All statistical comparisons
were made using an alpha of 0.05. ROC curves were generated and
area under the curve (AUC) was calculated for random forest
classifier using "pROC" and "ggplot2" packages. The R Environ-
ment of Statistical Computing (version 3.3.1; http://www.r-proj
ect.org) was used for all statistical analyses.

Results

SRH reveals diagnostic features of pediatric brain tumors
SRH images from 33 patients were reviewed for histopathologic
features that would allow for classification of pediatric type brain
tumors (see Supplementary Table S2 for patient list). Histologic
features of normal brain specimens were demonstrated in SRH
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images. Large pyramidal cell bodies of neurons were visualized in
neocortex (Fig. 2) of epilepsy patients. SRH highlights lipofuscin
pigment within the neuronal body as bright red signaling. Unlike
conventional H&E histology, axons are well visualized (Fig. 2).
Subcortical white matter shows distinct histologic features com-
pared to neocortex, with dense regions of myelinated axons and
interspersed oligodendrocytes (Fig. 2). Fresh cadaveric brain
tissue from the striatum (caudate) demonstrates neuronal cell
bodies in deep gray matter admixed with white matter tracts
(Fig. 2).

Low-grade pediatric brain tumors showed distinct histopath-
ologic features compared to normal brain tissue. Pilocytic astro-
cytoma, WHO grade I, has distinctive hair-like (piloid) processes
(Fig. 2). Ganglioglioma shows large neoplastic ganglion-like cells
with occasional bi-nucleation and a mixed glial neoplastic com-
ponent (Fig. 2). Unlike conventional H&E, the presence of naked
axons (white lines) on SRH provides additional helpful informa-
tion to easily differentiate infiltrative versus well-circumscribed
tumors. Pleomorphic xanthoastrocytoma, WHO grade II, shows
pleomorphiclarge tumor cells and giant lipidized glial tumor cells
(Fig. 2).

Distinctive features are also seen on SRH in high-grade tumors.
Diffuse midline glioma, WHO grade IV, shows areas of anaplasia
and microvascular proliferation (Fig. 2). Medulloblastoma and
other embryonal tumors, WHO grade IV, demonstrate small
round blue cell morphology and marked hypercellularity (Fig. 2).
SRH revealed a subpopulation of TAMs in high-grade pediatric
tumors. Phagocytosed cellular debris results in high intracellular
lipid content and resulting high 2,845 cm™! signal from the
cytoplasm of TAMs.

SRH reveals diagnostic cytoarchitectural features and
differentiates tumors of posterior fossa

Differentiating the most common pediatric tumors of the
posterior fossa is essential due to divergent surgical goals depend-
ing on intraoperative diagnosis. Pilocytic astrocytomas, WHO
grade I, shown in Fig. 3, have regions of dense tumor with high
cellularity mixed with pauci-cellular microcytic regions (biphasic
pattern). Rosenthal fibers, dense consolidations of glial fibrillary
acidic protein commonly seen in pilocytic astrocytomas, are
visualized as black on SRH due to an intense 2,930 cm~! SRS
signal. Ependymomas, WHO grade I, show rosette and perivas-
cular pseudorosette formation, both distinctive histoarchitectural
structures captured by SRH. Medulloblastomas have primitive
cellular morphology, round and angulated nuclei, and Homer-
Wright rosette formation (Fig. 3).

Because SRH is a label-free imaging method of fresh, unpro-
cessed surgical specimens, tissue processing artifacts seen with
cytologic preparations or frozen sectioning are avoided. Fig. 4
shows a germinoma with preserved cytologic and histoarchitec-
tural features. Large tumor cells with prominent nucleoli represent
the major cell population. A second population of mature, non-
neoplastic perivascular lymphocytes is also well visualized. The
corresponding intraoperative H&E pathology, including smear
preparation and frozen H&E section, demonstrates loss of his-
toarchitectural features and extensive freezing artifact that limits
interpretation.

Simulated intraoperative pathology consultation

Having demonstrated that histologic features of normal brain
tissue and common pediatric brain tumors are present in SRH

Cancer Res; 78(1) January 1, 2018
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Figure 2.

P> Oligodendrocyte  Striatum (caudate)

SRH histopathologic features of normal brain and pediatric brain tumors. A, Normal neocortex shows large pyramidal neurons with lipofuscin cytoplasmic
inclusions seen in bright pink. Axons are clearly visualized in neocortex as white lines. B, Normal subcortical white matter shows oligodendrocytes embedded
in a background of pink, bulbous densely myelinated axons. C, Striatum from a cadaveric specimen shows deep gray matter neurons with striated white
matter tracts. D, Pilocytic astrocytoma shows long, delicate piloid glial processes. E, Ganglioglioma has large binucleated ganglion cells in a glial background.
F, Pleomorphic xanthroastrocytoma with massive lipidized tumor cells (inset). G, Diffuse midline glioma show microvascular proliferation and anaplasia.

H and I, Medulloblastoma (H) and other embryonal tumors (1) show hypercellular, small round blue cell morphology and TAM infiltration. Scale bars, 100 um. (MVP,

microvascular proliferation).

images, we aimed to quantify the ability of SRH to deliver images
for reproducible and accurate histopathologic diagnoses. Results
of simulated consultation are shown in Figure 5. We found near-
perfect concordance between SRH and H&E histology for diag-
nosing nonlesional and lesional tissue (x = 0.86-1.00), as well as
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low-grade and high-grade pediatric brain tumors (x = 0.86-1.00).
Diagnostic accuracy for the above metrics (survey SRH/H&E
diagnosis vs. final diagnosis) was greater than 92% for both SRH
and H&E histology. For predicting the histopathologic class, there
was also near-perfect concordance (x = 0.90-0.95) and high
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Figure 3.

SRH identifies pediatric surgical lesions of the
posterior fossa. Magnetic resonance images
(midsagittal T1-weighted post-gadolinium) of the
three most common surgical lesions of posterior fossa
are shown: pilocytic astrocytoma (A), ependymoma
(E), and medulloblastoma (I). Pilocytic astrocytoma SRH
shows biphasic pattern (black dashed line; B) with
protein-rich pilocytic processes (C) and Rosenthal
fibers (D). Ependymomas demonstrate rosette
formation (F) and pseudorosette formation shown in
cross-section (G) and longitudinal section (H).
Medulloblastomas are densely hypercellular on

low- (J) and high-magnification (K). Homer-Wright
rosette formation (L) is visualized throughout the
SRH mosaic. Scale bars, 100 um in large tiles;

50 um in small tiles.

Ependymoma

accuracy for both modalities (SRH, 92-96%; H&E 92-100%).
These results indicate that pathologists' ability to determine
histopathologic diagnoses of fresh pediatric brain tumor speci-
mens using SRH images is highly concordant and as accurate as
current standard of care methods.

Image feature extraction and quantitative histology using SRH

The supervising neuropathologist (A.P. Lieberman) selected 30
SRH images for quantitative histologic analysis and image feature
extraction that best represented the histologic features of normal
brain and pediatric tumor tissue. Selected specimens included
normal brain tissue (294 FOVs, six mosaics) and low-grade (874
FOVs, 15 mosaics) and high-grade (683 FOVs, 10 mosaics)
tumors. SRH feature extraction pipeline schematic can be found
in Fig. 6. A statistically significant difference (P < 0.001) in nuclear
density was identified for normal tissue (11.7 + 10.9 cells),
low-grade tumors (123.4 + 88.4 cells), and high-grade tumors
(422.9 + 268.3; Fig. 6). A significant difference (P < 0.001) was
also identified in TAM density between normal (0.0 & 0.0 cells),
low-grade (2.8 £+ 6.0 cells), and high-grade (11.4 + 14.8
cells; Fig. 6). A weak, but statistically significant (P < 0.001),
correlation was identified between nuclear density and TAM
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density, with a correlation coefficient of 0.18 (95% confidence
interval, 0.12-0.21; Fig. 6).

Nuclear morphology parameters with the greatest normalized
difference between groups (i.e., normal vs. low-grade vs. high-
grade) were area, perimeter, eccentricity, and maximum feret
diameter. Box plots of these parameters can be found in Fig. 6.
With increased degree of malignancy, a trend towards increased
nuclear size was found (i.e. greater nuclear/cytoplasmic ratio with
tumor anaplasia). As shown in Fig. 6 box plots, median normal
nuclei area was 304 pixels, compared to 314 pixels for low-grade
tumors and 370 for high-grade tumors (P < 0.001). A similar
upward trend was found for median perimeter (normal = 94
pixels, low-grade = 109 pixels, high-grade = 113 pixels, P<0.001)
and maximum feret diameter (normal = 27.9 pixels, low-grade =
30.5 pixels, high-grade = 32.0 pixels, P < 0.001).

Machine-learning-based classification of fresh pediatric brain
specimens

To develop a supervised machine-learning method that utilizes
the SRH image features described above, we trained and imple-
mented a random forest model for rapid, automated intraopera-
tive classification of fresh tissue specimens. Nuclear density, TAM

Cancer Res; 78(1) January 1, 2018
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Figure 4.

FFPE H&E

SRH preserves cytologic and histoarchitectural features of pediatric brain tumors. A, Preoperative midsagittal T1-weighted post-gadolinium magnetic
resonance image of posterior fossa germinoma. B, Smear preparation shows the large germ cells with abundant foamy glycogen-rich cytoplasm

(yellow circle), admixed with reactive small lymphocyte (blue circle) adjacent to blood vessels (red arrows). C, Frozen sectioning causes freezing artifact that
disrupts essential cytologic features of germinoma, severely limiting interpretation. D, Formalin-fixed, paraffin-embedded (FFPE) H&E section shows large
tumor cells with prominent nucleoli and mature lymphocytes adjacent to blood vessels (red arrows). E, Similar to FFPE image, key diagnostic features are
shown in SRH with preserved specimen cytology and histoarchitecture, allowing for unhindered interpretation and accurate histopathologic diagnosis.

density, and nuclear morphology parameters were used as model
predictors. Evaluating the ability of our random forest model 1 to
predict normal versus lesional tissue at the SRH FOV level, we
achieved 93.8 £ 2.2% accuracy on cross-validation (optimized
mtry hyperparameter = 7). ROC analysis of random forest clas-
sifier values found an AUC of .970 (Fig. 7). For predicting low-
grade tissue versus high-grade tissue, we achieved an accuracy of
89.4 + 1.9% (optimized mtry hyperparameter = 2) with AUC of
0.96 (Fig. 7). Extracted image features with highest importance as
measured by mean Gini impurity decrease were nuclear density,
TAM density, nuclear compactness, and maximum radius. For
a full listing of model variable importance, see Supplementary
Figs. S1 and S2.

Mosaic-level, or specimen-level, classification was achieved by
assigning the most common FOV class within a mosaic, as
determined by random forest predictions, to the entire mosaic.
As an illustrative example, a ganglioglioma, WHO grade I, is
shown in Fig. 7. Model 1 predicted 23/49 FOVs as nonlesional
(47%) and the remaining 26/49 (53%) FOVs as lesional. The
mosaic is, therefore, correctly classified as lesional because greater

284 Cancer Res; 78(1) January 1, 2018

than 50% of FOVs were correctly predicted. Model 2 identified
an abundance of low-grade histopathology [47/49 FOVs (96%)],
consistent with a WHO grade I lesion. Fig. 7 shows each of the 25
mosaics included for analysis and the corresponding random
forest predictions represented as percentage of FOV tiles. Using
our modal approach for classifying SRH image mosaics, we
achieved 100% accuracy for classifying lesional and nonlesional
specimens and classifying low-grade and high-grade tumors.

Discussion

Rapid, accurate histopathologic diagnosis is essential for pro-
viding optimal surgical care in pediatric brain tumor patients. We
demonstrate that SRH is a viable alternative to conventional
histology for providing intraoperative histology without the need
for tissue processing, sectioning, or staining. SRH was able to
highlight the diagnostic features of common pediatric type brain
tumors. Near-perfect diagnostic concordance and accuracy indi-
cates a similar degree of diagnostic yield contained within SRH
and CH images. In addition to providing diagnostic quality
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Imaging  Neuropathologist 1 Neuropathologist 2 Neuropathologist 3 Interrater
Specimen type modality Correct Incorrect Correct Incorrect Correct Incorrect  accuracy
A Diagnosing nonlesional and lesional speumens
¥ Normal specimens H&E 1 5 0 5 0 93.3
SRH 4 1 5 0 5 0 93.3
H&E 12 1 13 0 13 0 97.4
SRH 13 0 13 0 12 1 97.4
High-grade tumors H&E 7 0 7 0 7 0 100
SRH 7 0 7 0 7 0 100
Total H&E 23 2 25 0 25 0 97.3
SRH 24 1 25 0 24 1 97.3
Intrarater accuracy H&E 92 100 100
SRH 96 100 96
Concordance (k) 0.86 1 0.88
§ Diagnosing low-grade and high-grade tumors
Low-grade tumors H&E 12 0 13 0 13 0 100
SRH 12 0 13 0 13 0 100
High-grade tumors H&E 7 0 7 0 7 0 100
SRH 7 0 6 1 7 0 100
Total H&E 20 0 20 0 20 0 100
SRH 20 0 19 1 20 0 98.3
Intrarater accuracy H&E 100 100 100
SRH 100 95 100
Concordance (k) 1 0.86 1
Diagnosing histopathologic class
Normal specimens H&E 4 1 5 0 5 0 93.3
SRH 4 1 5 0 5 0 93.3
Low-grade tumors H&E 11 1 13 0 13 0 94.8
SRH 12 0 12 1 12 1 92.3
High-grade tumors H&E 7 0 7 0 7 0 100
SRH 7 0 6 1 6 1 90.4
Total H&E 23 2 25 0 25 0 97.3
SRH 24 1 23 2 23 2 93.3
Intrarater accuracy H&E 92 100 100
SRH 96 92 92
Concordance (k) 0.95 0.91 0.9

Figure 5.

Evaluation of SRH via simulated intraoperative pathology consultation. Results from web-based survey shown in the table. SRH and standard H&E images
from 25 patients were presented to three neuropathologists for evaluation. Free-text responses were evaluated on three levels: (i) normal vs. lesional (A),

(ii) low-grade vs. high-grade (B), and (iii) histopathologic diagnosis (C). Examples of images included in the survey are shown with corresponding SRH and H&E
images above: normal cortex; ganglioglioma, WHO grade I; pilocytic astrocytoma, WHO grade |; medulloblastoma, WHO grade 1V; ependymoma, WHO

grade II; and embryonal tumor other than medulloblastoma, WHO grade IV.

images, SRH also allows for rapid quantitative histology through
digital image processing. By leveraging the image contrast
contained in the 2,845 cm™' (CH,/lipid) and 2,930 cm '
(CH3s/protein) channels, we were able to identify and segment
TAMs and tumor nuclei for feature extraction and quantitative
image analysis. Using cellularity and nuclear morphologic para-
meters, random forest machine-learning models accurately iden-
tified lesional tissue and tumor grade at both the FOV level and
specimen level for automated classification of pediatric brain
tumor specimens.

Sampling high-quality, lesional tissue within a resection cavity
is paramount for establishing a final pathologic diagnosis using
conventional histology and molecular markers. The increasing
importance of molecular diagnostics in pediatric neuro-oncology,
including WNT-activation, Shh-activation, BRAF mutations, RELA
fusion, and H3 K27M-mutation, among others, requires a stan-
dardized and streamlined intraoperative histology system that
ensures high diagnostic yield from sampled tissue (14). SRH, as a
label-free and non-destructive optical imaging modality, allows
for the same tissue to be imaged intraoperatively and subsequent-
ly used for permanent fixation and molecular testing (10, 11, 19).

www.aacrjournals.org

This advantage of SRH over conventional histology is especially
important when only scant tissue can be safely sampled due to
tumor location in eloquent brain regions, such as with diffuse
midline gliomas. Because SRH requires only minimal tissue for
intraoperative diagnosis and the same specimen can be used for
final diagnosis, SRH is well positioned to impact the practice of
both histopathologic and molecular diagnoses of pediatric brain
tumors.

Although other optical imaging modalities, including fluores-
cence-guided surgery with 5-aminolevulinic acid (20), coherent
anti-Stokes Raman scattering microscopy (21, 22), Raman spec-
troscopy (23, 24), mass spectrometry (25-27), optical coherent
tomography (2), and confocal microscopy (3, 4), have been used
to detect brain tumor infiltration, SRH provides diagnostic quality
images that allow for histopathologic assessment of tissue that
compares with standard H&E histology. Because SRH images are
acquired digitally, they can be immediately uploaded to a health
system's picture archiving and communications (PACS) system,
as is done in our own medical center. PACS-based SRH provides
an opportunity for remote neuropathology assessment of intrao-
perative images and integration of SRH images into stereotactic

Cancer Res; 78(1) January 1, 2018
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SRH feature extraction and quantitative histology. A, CellProfiler feature extraction pipeline was developed to split composite SRH images into 2845 cm'/CH,
and 2,930-2,845 le/CHg‘CHZ images for nuclear and TAM segmentation, respectively. Automated cell counting was implemented for each FOV.

Morphologic analysis was then completed for each segmented nuclei as a measure of nuclear anaplasia. Automated nuclear (B) and TAM (C) counts are
associated with increasing tumor grade and show a weak linear correlation (D). E, Nuclear morphology parameters show statistically significant trend towards

larger nuclei with increasing tumor grade.

navigational systems. Registered neurosurgical instruments can
assign spatial coordinates to the location of the specimen biopsy;
histologic features from SRH images can then be represented in a
three-dimensional tumor cavity. SRH combined with stereotactic
navigational systems has the potential to guide tumor removal,
improve safe maximal resection, and improve patient outcomes.

SRH provides a novel histologic dataset that allows for quan-
titative histology and intraoperative computer-aided diagnosis
(CAD). Machine-learning algorithms for diagnostic classification
have been applied to multiple imaging modalities across disci-
plines, including brain tumors (28-30), diabetic retinopathy
(31), dermatologic lesions (32), lung cancer (33), and breast
lesions (34, 35). CAD can ultimately reduce inter-rater variability
and standardize intraoperative pathology. In addition, intrao-
perative SRH-based CAD can reduce operative time by (i) elim-
inating the need for tissue processing and (ii) decreasing the time
for image interpretation.

Cancer Res; 78(1) January 1, 2018

Our previous work using SRH for machine-learning-based
diagnosis was a proof-of-concept for applying high-level pattern
recognition techniques combined with a multilayer perceptron
for tumor classification (13). The aim of the current study was to
extract specific and known histopathologic features of neoplastic
tissues and deploy a machine-learning algorithm to map specific
image features to pediatric brain tumor diagnoses. Random forest
models are amenable to determining the importance of each
image feature for brain tumor classification. By extracting specific
image features and using a highly interpretable machine-learning
method, we determine that known histopathologic features used
by the neuropathologist to identify lesional tissue and diagnosis
tumor grade can also be used for machine-learning-based pedi-
atric brain tumor diagnosis.

Our random forest classifier was able to accurately identify
lesional tissue, which can improve the diagnostic yield of col-
lected specimens and guide tumor resection via rapid, automated
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Figure 7.

Validation of machine-learning model for classification of pediatric brain tumor specimens. A, SRH image mosaic (center) of a ganglioglioma, WHO grade |,

is shown with individual FOV tiles demarcated with dashed black lines. Select color-coded tiles from the image mosaic are shown peripherally to demonstrate
the random forest classifier. Model 1 (left) classified the green-labeled FOV as normal with 90% probability, receiving 449/500 tree votes. By contrast, purple
labeled FOV was classified as lesional with 82% probability, receiving 412/500 tree votes. Normal and lesional classifier probabilities are shown for each
mosaic FOV in adjacent heat map. Mosaic is correctly classified as lesional with 53.1% (i.e., modal class) of tiles voted lesional. Model 2 (right) follows similar
implementation; the majority of tiles are classified as low-grade with high probability. B, ROC analysis for FOV-level performance of model 1. Optimized sensitivity
and specificity are shown. C, ROC analysis for FOV-level performance of model 2. D, Model 1 mosaic-level performance shown as cumulative percentage of tiles
with normal or lesional classification within each mosaic. Dashed line represents the threshold for modal diagnosis and results are shown in adjacent columns.
E, Model 2 mosaic-level performance for differentiating low-grade and high-grade tumors (DNET, dysembryoplastic neuroepithelial tumor).

classification of specimens. Extent of resection is a major mod-
ifiable risk factor forimproved clinical outcomes in pediatric brain
tumors. Evidence supports that gross-total or near-total resection
confers longer progression-free and overall survival in patients
with ependymomas and pilocytic astrocytomas (5-8). Converse-
ly, aggressive surgical resection has not been shown to be of
benefit in medulloblastoma (9). The divergence of surgical goals
depending on intraoperative diagnosis of tumor grade makes
accurate detection of low-grade versus high-grade features within
tumor resection cavities essential both for surgical management
and providing optimal adjuvant treatments in the postoperative

www.aacrjournals.org

setting. SRH-based CAD provides a streamlined and accurate
system for serial biopsies throughout a brain tumor resection to
better characterize tumor heterogeneity, inform surgical goals and
improve extent of resection.

Future directions for using SRH as a system for intraoperative
pediatric brain pathology include validating SRH in a large, multi-
institutional cohort of pediatric patients. Validating SRH in a
larger cohort will allow for a more nuanced diagnosis of rare brain
tumors and better analysis of its performance across multiple
brain tumor types. Machine-learning classification of tumor speci-
mens into WHO diagnoses was not possible due to sample size

Cancer Res; 78(1) January 1, 2018
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limitations, however larger image datasets will make this plausi-
ble in the near future. With larger SRH datasets, deep learning and
convolutional neural networks may be used for robust, automat-
ed feature extraction that can improve accuracy of pediatric brain
tumor diagnosis. Finally, the integration of SRH imaging data
with clinical, molecular, and genomic patient information may
improve diagnostic classification and provide more personalized
treatment options for pediatric brain tumor patients.
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