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Intraoperative diagnosis is essential for providing safe and 
effective care during cancer surgery1. The existing work-
flow for intraoperative diagnosis based on hematoxylin and 
eosin staining of processed tissue is time, resource and 
labor intensive2,3. Moreover, interpretation of intraoperative 
histologic images is dependent on a contracting, unevenly 
distributed, pathology workforce4. In the present study, we 
report a parallel workflow that combines stimulated Raman 
histology (SRH)5–7, a label-free optical imaging method 
and deep convolutional neural networks (CNNs) to predict 
diagnosis at the bedside in near real-time in an automated 
fashion. Specifically, our CNNs, trained on over 2.5 million 
SRH images, predict brain tumor diagnosis in the operating 
room in under 150 s, an order of magnitude faster than con-
ventional techniques (for example, 20–30 min)2. In a multi-
center, prospective clinical trial (n = 278), we demonstrated 
that CNN-based diagnosis of SRH images was noninferior to 
pathologist-based interpretation of conventional histologic 
images (overall accuracy, 94.6% versus 93.9%). Our CNNs 
learned a hierarchy of recognizable histologic feature repre-
sentations to classify the major histopathologic classes of 
brain tumors. In addition, we implemented a semantic seg-
mentation method to identify tumor-infiltrated diagnostic 
regions within SRH images. These results demonstrate how 
intraoperative cancer diagnosis can be streamlined, creating 
a complementary pathway for tissue diagnosis that is inde-
pendent of a traditional pathology laboratory.

Approximately 15.2 million people are diagnosed with cancer 
across the world annually and more than 80% will undergo surgery1. 

In many cases, a portion of the excised tumor is analyzed during 
surgery to provide preliminary diagnosis, to ensure that the speci-
men is adequate for rendering final diagnosis and to guide surgical 
management. In the USA, there are over 1.1 million biopsy speci-
mens annually8, all of which must be interpreted by a contracting 
pathology workforce9. The conventional workflow for intraopera-
tive histology, dating back over a century3, necessitates tissue trans-
port to a laboratory, specimen processing, slide preparation by 
highly trained technicians and interpretation by a pathologist, with 
each step representing a potential barrier to delivering timely and 
effective surgical care.

By harnessing advances in optics5 and artificial intelligence 
(AI), we developed a streamlined workflow for microscopic imag-
ing and diagnosis that ameliorates each of these barriers. SRH is 
an optical imaging method that provides rapid, label-free, sub-
micrometer-resolution images of unprocessed biologic tissues5. 
SRH utilizes the intrinsic vibrational properties of lipids, proteins 
and nucleic acids to generate image contrast, revealing diagnostic 
microscopic features and histologic findings poorly visualized with 
hematoxylin and eosin (H&E)-stained images, such as axons and 
lipid droplets7, while eliminating the artifacts inherent in frozen or 
smear tissue preparations6.

Advances in fiber-laser technology have enabled the develop-
ment of a Food and Drug Administration-registered system for 
generating SRH images that can be used in the operating room. We 
have demonstrated that SRH images reveal microscopic architec-
tural features comparable to conventional H&E images6. Given this 
finding, we recently deployed clinical SRH imagers in our operating 
rooms, making histologic data readily available during surgery6,10.
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Whether histologic images are obtained via SRH or frozen sec-
tioning, diagnostic interpretation has required the expertise of a 
trained pathologist. Both globally and within the USA, there is 
an uneven distribution of expert pathologists available to provide 
intraoperative diagnosis. For example, many centers performing 
brain tumor surgery do not employ a neuropathologist, and further 
shortages are expected given the 42% vacancy rate in neuropathol-
ogy fellowships4. Moreover, although final pathologic diagnosis is 
increasingly driven by molecular rather than morphologic criteria11, 
intraoperative diagnosis relies heavily on interpretation of cytologic 
and histoarchitectural features. We hypothesized that the application 
of AI could be used to expand access to expert-level intraoperative 
diagnosis in the ten most commonly encountered brain tumors and 
augment the ability of pathologists to interpret histologic images.

We have previously demonstrated that SRH images are par-
ticularly well suited for computer-aided diagnosis using hand-
engineered feature extractors, with random forest and multilayer 
perceptron classifiers6,10,12. However, the manual feature engineering 
inherent in these methods is challenging, requires domain-specific 
knowledge and poses a major bottleneck toward achieving human-
level accuracy and clinical implementation13. In contrast, deep 
neural networks utilize trainable feature extractors, which provide 
a learned and optimized hierarchy of image features for classifica-
tion. Human-level accuracy for image classification tasks has been 
achieved through deep learning in the fields of ophthalmology14, 
radiology15, dermatology16 and pathology17–19.

Consequently, we designed a three-step intraoperative tissue-
to-diagnosis pipeline (Fig. 1) consisting of: (1) image acquisition, 
(2) image processing and (3) diagnostic prediction via a CNN  
(see Supplementary Video 1). A fresh, unprocessed surgical speci-
men is passed off the surgical field and a small sample (for example, 
3 mm3) is compressed into a customized microscope slide. After 
inserting the slide into the SRH imager, images are acquired at two 
Raman shifts: 2,845 cm−1 and 2,930 cm−1. SRH images are then pro-
cessed via a dense sliding window algorithm to generate overlap-
ping, single-scale, high-resolution and high-magnification patches 
used for CNN training and inference. In the prediction stage, indi-
vidual patches are passed through the trained Inception-ResNet-v2 
network, a benchmarked neural network that combines inception 
modules and residual connections in a deep CNN architecture for 
image classification20.

Over 2.5 million labeled patches from 415 patients were used for 
CNN training (see Extended Data Fig. 1). The CNN was trained 
to classify tissue into 13 histologic categories, organized into a 
taxonomy that includes output and inference nodes focusing on 
commonly encountered brain tumors (see Extended Data Fig. 2). 
To provide a final patient-level diagnostic prediction, an infer-
ence algorithm was developed to map all patches from a speci-
men to a single probability distribution over the diagnostic classes  
(see Extended Data Fig. 3).

Noting the commentary on the importance of rigorous clini-
cal evaluations of deep-learning-based algorithms21, we executed a 
two-arm, prospective, multicenter, noninferiority clinical trial com-
paring the diagnostic accuracy of pathologists interpreting conven-
tional histologic images (control arm) with the accuracy of SRH 
image classification by the CNN (experimental arm) (see Extended 
Data Fig. 4 and Supplementary Table 1). Fresh brain tumor speci-
mens were collected, split intraoperatively into sister specimens, 
and randomly assigned to the control or experimental arm. Sister 
specimens in the control arm were processed via conventional fro-
zen section and smear preparation techniques and interpreted by 
board-certified pathologists. Sister specimens in the experimental 
arm were imaged with SRH and diagnosis was predicted by the 
CNN. The number of patients included was 278 and the primary 
endpoint was overall multiclass diagnostic accuracy, using final 
clinical diagnosis as the ground truth. Overall diagnostic accuracy 
was 93.9% (261/278) for the conventional H&E histology arm and 
94.6% (264/278) for the SRH plus CNN arm, exceeding our primary 
endpoint threshold for noninferiority (>91%) (Fig. 2).

Notably, the CNN was designed to predict diagnosis independent 
of clinical or radiographic findings, which were reviewed by study 
pathologists and are often of central importance in diagnosis. Of 
the 14 errors in the SRH plus CNN arm, 9 were glial tumors, which 
often have overlapping morphologic characteristics but highly 
divergent clinical presentations and radiographic appearances. Of 
the 17 errors in the conventional H&E arm, 10 were malignant 
gliomas incorrectly classified by pathologists as metastatic tumors, 
gliosis/treatment effect or pilocytic astrocytoma. In addition, the 
CNN correctly classified all 17 of the cases in which the patholo-
gist’s diagnosis was incorrect (see Extended Data Fig. 5). Moreover, 
pathologists correctly diagnosed all 14 cases misdiagnosed in the 
CNN/SRH arm. These results indicate that CNN-based classifica-
tion of SRH images could aid pathologists in the classification of 
challenging specimens.

Although the CNN output classes in the present study would 
cover more than 90% of all brain tumors diagnosed in the USA22, 
the diversity and scarcity of rare tumors preclude training of a fully 
universal CNN for brain tumor diagnosis. Understanding the limi-
tations of our CNN, we developed and implemented a Mahalanobis 
distance-based confidence scoring system to detect rare tumors23. 
Of the patients enrolled in our trial, 13 were diagnosed with 9 rare 
tumor types. Our method for rare tumor detection identified all  
13 tumors as entities distinct from the output diagnostic classes  
(see Extended Data Fig. 6).

To gain insight into the learned representations utilized by the 
CNN for image classification, we used activation maximization, 
which generates an image that maximally activates a neuron in any 
neural network layer, using iterations of gradient ascent in the input 
space (Fig. 3 and see Extended Data Fig. 7)24. Deep hidden layers 
detected nuclear and chromatin morphology, axonal density and 

Fig. 1 | Intraoperative diagnostic pipeline using SRH and deep learning. The intraoperative workflows for both conventional H&E staining histology and SrH 
plus CNNs are shown in parallel. a, Freshly excised specimens are loaded directly into an SrH imager for image acquisition. Operation of the SrH imager 
is performed by a single user, who loads tissue into a carrier and interacts with a simple touch-screen interface to initiate imaging. Images are sequentially 
acquired at two raman shifts, 2,845 cm−1 and 2,930 cm−1, as strips. After strip stitching, the two image channels are registered and virtual H&E provides 
SrH mosaics for an intraoperative review by surgeons and pathologists. Time to acquire a 1 × 1-mm2 SrH image is approximately 2 min. b, Image processing 
starts by using a dense sliding window algorithm with valid padding over the 2,845 cm−1 and 2,930 cm−1 images concurrently. registered 2,845 cm−1 and 
2,930 cm−1 image patches are subtracted pixelwise to generate a third image channel (2,930 cm−1 to 2,845 cm−1) that highlights nuclear contrast and 
cellular density. Each image channel is post-processed to enhance image contrast and concatenated to produce a single three-channel rGB image for 
CNN input. c, To provide an intraoperative prediction of brain tumor diagnosis, each patch undergoes a feedforward pass through the trained CNN and 
takes approximately 15 s using a single graphics processing unit (GPU) for the 1 × 1-mm2 SrH image. Our inference algorithm (see Extended Data Fig. 3) for 
patient-level diagnosis acts by retaining the high probability tumor regions within the image based on patch-level predictions, and filtering the nondiagnostic 
and normal areas. Patch-level predictions from tumor regions are then summed and renormalized to generate a patient-level probability distribution over 
the diagnostic classes. Our pipeline can provide a diagnosis in <2.5 min using a 1 × 1-mm2 image, decreasing time to diagnosis by a factor of 10 compared 
with conventional intraoperative histology2. Scale bar, 50 μm.
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histoarchitecture, indicating that our network learned recogniz-
able, domain-specific feature representations. We sampled 1,000  
SRH patches from normal brain tissue and 2 tumor classes to inves-
tigate class-specific, hidden-layer neuron activation. Neurons from 
a deep hidden layer (convolutional layer 159) with maximal mean 
activation for each class were recorded and the distribution of mean 
rectified linear unit activations was plotted.

The images generated through activation maximization reveal 
recognizable features for each histologic class. For example, green lin-
ear structures (neuron 148) represent lipid-rich axons found in gray 
matter. Neuron 12 was maximally active for malignant glioma and 
responds to high nuclear density and lipid droplets, features associ-
ated with higher-grade gliomas25,26. Neuron 101 was maximally acti-
vated by patches containing large nuclei with prominent nucleoli and 
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cytoplasmic vesicles commonly seen in metastatic tumor cells and 
pyramidal neurons. These results indicate that the CNN has learned 
the importance of specific histomorphologic, cytologic and nuclear 
features for image classification, including some features classically 
used by pathologists to diagnose cancer. In addition, we used t-dis-
tributed stochastic neighbor embedding to show that our histologic 
categories have similar internal CNN feature representations and 
form clusters based on diagnostic classes (see Extended Data Fig. 8).

We also implemented a semantic segmentation technique to 
provide pixel-level classification and demonstrate how CNN-based 

analysis could be used to highlight diagnostic regions within an 
SRH image (see Extended Data Fig. 9). By utilizing a dense sliding 
window algorithm, every pixel in an SRH image has an associated 
probability distribution over the diagnostic classes that is a func-
tion of the local overlapping patch-level predictions. Class prob-
abilities can be mapped to a pixel intensity scale. A three-channel 
RGB overlay indicating tumor tissue, normal/non-neoplastic tissue 
and nondiagnostic regions allows for image overlay of pixel-level 
CNN predictions. Our segmentation method achieved a mean 
intersection-over-union (IOU) value of 61.6 ± 28.6 for the ground 
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Fig. 2 | Prospective clinical trial of SRH plus CNN versus conventional H&E histology. a, The prediction probabilities for the ground truth classes are 
plotted in descending order by medical center with indication of correct (green) or incorrect (red) classification. b, Multiclass confusion matrices for 
both the control arm and the experimental arm. Mistakes in the control arm, traditional H&E histology with pathologist, were mostly misclassification of 
malignant gliomas (10/17). The glial tumors had the highest error rate in the SrH plus CNN arm (9/14). Less common tumors, including ependymoma, 
medulloblastoma and pilocytic astrocytoma, were also misclassified, probably due to a limited number of cases for model training, resulting in lower 
mean class accuracy compared with the control arm. These errors are likely to improve with additional SrH training data. Model performance on cases 
misclassified using conventional H&E histology can be found in Extended Data Fig. 6. The glioma inference class was used for the clinical trial in the setting 
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arms. LGG, low-grade glioma. aNo gliosis/treatment effect cases were enrolled during the clinical trial. This row is included because gliosis was a predicted 
label and to maintain the convention of square confusion matrices.
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truth diagnostic class and 86.0 ± 19.2 for the tumor inference class, 
for patients in our prospective cohort. Analysis of specimens col-
lected at the tumor–brain interface in primary (Fig. 4) and meta-
static brain tumors (see Extended Data Fig. 10) demonstrates how 
the CNN can differentiate tumor from noninfiltrated brain and 
nondiagnostic regions.

Our semantic segmentation technique parallels that of Chen and 
colleagues who reported the development of an augmented real-
ity microscope with real-time AI-based prostate and breast cancer 

diagnosis using conventional light microscopy27. Both methods 
superimpose diagnostic predictions of an AI algorithm on a micro-
scopic image, calling the clinician’s attention to areas containing 
diagnostic information and providing insight into how AI could 
ultimately streamline tissue diagnosis.

In conclusion, we have demonstrated how combining SRH 
with deep learning can be employed to rapidly predict intraopera-
tive brain tumor diagnosis. Our workflow provides a transparent 
means of delivering expert-level intraoperative diagnosis where 
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neuropathology resources are scarce, and improving diagnostic 
accuracy in resource-rich centers. The workflow also allows sur-
geons to access histologic data in near real-time, enabling more 
seamless use of histology to inform surgical decision-making based 
on microscopic tissue features.

In the future we anticipate that AI algorithms can be devel-
oped to predict key molecular alterations in brain tumors such as 
O-methylguanine DNA methyltransferase (MGMT) methylation, 
isocitrate dehydrogenase (IDH) and α-thalassemia/mental-retar-
dation-syndrome-X-linked gene (ATRX) status. In addition, it is 
possible that SRH will ultimately incorporate spectroscopic detec-
tion of the metabolic effects of diagnostic genetic mutations, such 
as accumulation of 2-hydroxyglutarate in IDH-mutated gliomas. In 
the interim, however, we note that SRH preserves the integrity of 
imaged tissue for downstream analytic testing and integrates well 
within the modern practice of molecular diagnosis.

Although our workflow was developed and validated in the context 
of neurosurgical oncology, many histologic features used to diagnose 
brain tumors are found in the tumors of other organs. Consequently, 
we predict that a similar workflow incorporating optical histology and 

deep learning could apply to dermatology28, head and neck surgery29, 
breast surgery30 and gynecology31, where intraoperative histology 
is equally central to clinical care. Importantly, our AI-based work-
flow provides unparalleled access to microscopic tissue diagnosis at 
the bedside during surgery, facilitating detection of residual tumor, 
reducing the risk of removing histologically normal tissue adjacent 
to a lesion, enabling the study of regional histologic and molecular 
heterogeneity, and minimizing the chance of nondiagnostic biopsy or 
misdiagnosis due to sampling error32,33.
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Methods
Study design. The main objectives of the study were to: (1) develop an 
intraoperative diagnostic computer vision system that combines clinical SRH and 
a deep-learning-based method to augment the interpretation of fresh surgical 
specimens in near real-time, and (2) perform a multicenter, prospective clinical 
trial to test the diagnostic accuracy of our clinical SRH system combined with 
trained CNNs. ‘Near real-time’ diagnosis was defined as a nonclinically substantial 
delay from the time of tissue removal from the resection cavity to tissue diagnosis 
(that is, 2–3 min). Patient enrollment for intraoperative SRH imaging began 1 June 
2015. Inclusion criteria for intraoperative imaging included: (1) male or female; 
(2) subjects undergoing central nervous system (CNS) tumor resection or epilepsy 
surgery at Michigan Medicine, New York–Presbyterian/Columbia University 
Medical Center or the University of Miami Health System; (3) subject or durable 
power of attorney able to give informed consent; and (4) subjects in whom there 
was additional specimen beyond what was needed for routine clinical diagnosis. 
We then trained and validated a benchmarked CNN architecture on an image 
classification task to provide rapid and automated evaluation of fresh surgical 
specimens imaged with SRH. CNN performance was then tested using a two-arm, 
prospective, noninferiority trial conducted at three tertiary medical centers  
with dedicated brain tumor programs. A semantic segmentation method was 
developed to allow for surgeon and pathologist review of SRH images with 
integrated CNN predictions.

Stimulated Raman histology. All images used in the present study were obtained 
using a clinical stimulated Raman scattering (SRS) microscope5. Biomedical 
tissue is excited with a dual-wavelength fiber laser with a fixed wavelength 
pump beam at 790 nm and a Stokes beam tunable from 1,015 nm to 1,050 nm. 
This configuration allows for spectral access to Raman shifts in the range from 
2,800 cm−1 to 3,130 cm−1 (ref. 35). Images are acquired via beam scanning with a 
spatial sampling of 450 nm pixel−1, 1,000 pixels per strip and an imaging speed for 
0.4 Mpixel(s) per Raman shift. The NIO Laser Imaging System (Invenio Imaging, 
Inc.), a clinical fiber-laser-based SRS microscope, was used to acquire all images in 
the prospective clinical trial. For SRH, samples were imaged sequentially at the two 
Raman shifts: 2,850 cm−1 and 2,950 cm−1. Lipid-rich brain regions (for example, 
myelinated white matter) demonstrate high SRS signal at 2,845 cm−1 due to CH2 
symmetric stretching in fatty acids. Cellular regions produce high 2,930 cm−1 
intensity and large signal2,930:signal2,845 ratios to high protein and DNA content. A 
virtual H&E look-up table is applied to transform the raw SRS images into SRH 
images for intraoperative use and pathologic review. A video of intraoperative SRH 
imaging with automated CNN-based prediction can be found in Supplementary 
Video 1. The NIO Imaging System (Invenio Imaging, Inc.) is delivered ready to 
use for image acquisition. SRH images can be reviewed locally using the integrated 
high-definition monitor, remotely via the health system’s picture archiving and 
communication system or a cloud-based image viewer that allows images to be 
reviewed anywhere with a high-speed internet connection of less than 30 s.

Image preprocessing and data augmentation. The 2,845 cm−1 image was 
subtracted from the 2,930 cm−1 image, and the resultant image was concatenated 
to generate a three-channel image (2,930 cm−1 minus 2,845 cm−1, red; 2,845 cm−1, 
green; 2,930 cm−1, blue). A 300 × 300-pixel2 sliding window algorithm with 
100-pixel step size (both horizontal and vertical directions) and valid padding 
was used to generate image patches. This single-scale sliding window method 
over high-resolution, high-magnification images has the following advantages: 
(1) accommodates the image input size of most CNN architectures without 
downsampling; (2) allows for efficient, graphical processing, unit-based, model 
implementation; (3) boosts the number of training and inference images by 
approximately an order of magnitude; (4) allows for better learning of high-
frequency image features; and is (5) faster and (6) easier to implement compared 
with multi-scale networks. Previous multi-scale CNN implementations have not 
yielded better performance for image classification tasks involving histologic 
images36. In addition, the use of larger, lower-magnification images complicates 
image label assignment in the setting of multiple class labels applying to separate 
regions within a single image (that is, white matter, tumor tissue, nondiagnostic 
gliotic tissue, and so on), which introduces an additional tunable hyperparameter 
to identify an optimal class-labeling strategy. This problem is effectively avoided 
using high-magnification patches, where multiple class labels for a single image 
are rare. To optimize image contrast, the bottom and top 3% of pixels by intensity 
from each channel were clipped and images rescaled. All image patches in the 
training, validation and testing datasets were reviewed and labeled by study authors 
(T.C.H, S.S.K., S.L, A.R.A. and E.U.). To accommodate class imbalance due to 
variable incidence rates between the CNS tumors included in the present study, 
oversampling was used for the underrepresented classes. We used multiple, label-
preserving, affine transformations for data augmentation, including any uniformly 
distributed, random combination of rotation, shift and reflection. All images were 
mean zero centered by subtracting the channel mean of the training set.

Image datasets. The present study included four image datasets obtained from 
four SRH imagers: (1) University of Michigan (UM) images from a prototype 
clinical SRH microscope6; (2) UM images from one NIO Imaging System; 

(3) Columbia University images from a second NIO Imaging System; and (4) 
University of Miami images from a third NIO Imaging System. Distribution of 
tumor classes by both number of patches and patients used for CNN training 
and validation can be found in Extended Data Fig. 1. A total of 296 patients were 
imaged using the prototype SRH microscope and 339 using the NIO Imaging 
System. Final tissue diagnosis was provided by each institution's board-certified 
neuropathologists. Only UM images were used for model training and validation. 
Images acquired at Columbia University and the University of Miami were used 
only in the prospective clinical trial to test model performance on SRH images 
acquired at other medical centers and optimize assessment of CNN generalizability 
within the present study.

CNN training. A total of 13 diagnostic classes were selected that (1) represent the 
most common CNS tumors11,22 and (2) optimally inform intraoperative decisions 
that bring about surgical goals. Classes included malignant glioma (glioblastoma 
and diffuse midline glioma, World Health Organization (WHO) grade IV), 
diffuse lower-grade gliomas (oligodendrogliomas and diffuse astrocytomas, WHO 
grades II and III), pilocytic astrocytoma, ependymoma, lymphoma, metastatic 
tumors, medulloblastoma, meningioma, pituitary adenoma, gliosis/reactive 
astrocytosis/treatment effect, white matter, gray matter and nondiagnostic tissue. 
We implemented the Google (Google LLC) Inception-ResNet-v2 architecture 
with 55.8 million trainable parameters randomly initialized. Similar to previous 
studies, our preliminary experiments using pretrained weights from the ImageNet 
challenge did not improve model performance, probably due to the large domain 
difference and limited feature transferability between histologic images and natural 
scenes (see Extended Data Fig. 6)36,37. The network was trained on approximately 
2.5 million unique patches from 415 patients using a categorical cross-entropy loss 
function weighted using inverse class frequency. A randomly selected 16-patient 
validation set, imaged using the NIO Imaging System at UM, was used for 
hyperparameter tuning and model selection based on patch-level classification 
accuracy. We used the Adam optimizer with an initial learn rate of 0.001, β1 of 
0.9 and β2 of 0.999 (exponential decay rates), ε of 10−8 (constant for numerical 
stability) and a 32-image batch size. An early stopping callback was used with a 
minimum validation accuracy increase of 0.05 and 5 epoch patients (see Extended 
Data Fig. 1). Training, validation and testing were done using the high-level 
Python-based neural network API, Keras (v.2.2.0), with a TensorFlow (v.1.8.0)38 
backend running on two NVIDIA GeForce 1080 Ti graphical processing units.

Patient-level diagnosis and inference algorithm. Patch-level predictions from 
each patient need to be mapped to a mosaic-, specimen- or patient-level diagnosis 
to provide a final intraoperative classification (see Extended Data Fig. 3). The set 
of diagnostic patch softmax output vectors from a specimen or patient is summed 
elementwise and renormalized to produce specimen-level or patient-level probability 
distribution. To account for normal brain and pathologic tissue contained within the 
same specimen, a thresholding procedure was used, such that, if the probability of 
a normal specimen was >90%, a normal label was assigned. Otherwise, the normal 
class probabilities were set to zero, the probability distribution was renormalized 
and the final diagnosis was the expected value of the renormalized distribution. Our 
inference algorithm leverages the fact that normal brain tissue and nondiagnostic 
regions have similar histologic features among all patients, resulting in high patch-
level classification accuracy for normal brain, and eliminating the need to train an 
additional classifier based on the patch-level probability histograms39. Similar to 
previous publications using deep learning for medical diagnosis15,16, a taxonomy  
of inference classes was used to allow for classification at various clinically relevant 
levels of granularity (see Extended Data Fig. 2). The probability of any parent/
inference class is the sum of its child node probabilities.

Mahalanobis distance-based confidence score. The most common brain 
tumor types were used for model training and includes >90% of all CNS tumors 
diagnosed in the USA22; however, rare tumor types will be encountered in the 
clinical setting. Therefore, in addition to a posterior probability distribution over 
the CNN output classes, we aimed to provide a confidence score to detect tumor 
samples that are far away from the training distribution, to detect rare tumor types 
not included during training. We induce class-conditional gaussian distributions 
with respect to mid- and upper-level features (that is, layer outputs) of our CNN 
under gaussian discriminant analysis, which results in a confidence score based on 
the Mahalanobis distance23. Without any modification to our pertained network, 
we obtain a generative model by converting the penultimate layer, for example, to 
a class-conditional distribution that follows a multivariate gaussian distribution. 
Specifically, we compute 13 class-conditional gaussian distributions, one for each 
histologic class, with a tied covariance matrix using our training set. Using these 
induced class-conditional gaussian distributions, we calculate a confidence score, 
M(x), using the Mahalanobis distance between the test specimen x and the closest 
class-conditional gaussian distribution:

M xð Þ ¼ min
c

f xð Þ � μcð Þ⊺Σ̂�1
f xð Þ � μcð Þ

where �μc
I

 is the class mean, f(x) is the output from the penultimate layer and Σ̂
I

 is 
the tied covariance matrix. The specimen-level confidence is the mean patch-level 
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confidence score. To improve performance and increase separability of common 
and rare tumor classes as previously described23, we implemented an ensemble 
method that included output from seven layers: convolutional layers 159, 195, 199 
and 203, final average pooling layer, final dense layer and softmax output layer. 
Mahalanobis distance-based confidence scores for each layer were then used as 
features to train a linear discriminant classifier on our training set and rare tumor 
specimens imaged before starting prospective trial enrollment.

Prospective clinical trial design. A noninferiority trial was designed to rigorously 
validate our proposed intraoperative diagnostic pipeline. An expected accuracy 
of 96%, a δ (inferiority limit) of 5%, α (alpha level) of 0.05 and statistical power 
of 0.9 were used to calculate a minimum patient sample size of 264, with the 
primary endpoint of overall multiclass diagnostic accuracy (see Extended Data 
Fig. 4). Prospective enrollment began on 6 April 2018 and closed on 26 February 
2019, with a total of 302 patients enrolled. Clinical trial inclusion criteria were the 
same for intraoperative SRH imaging. Exclusion criteria were: (1) poor quality 
of specimen on visual gross examination due to excessive blood, coagulation 
artifact, necrosis or ultrasonic damage or (2) specimen classified as out of 
distribution by the linear discriminant analysis classifier using the Mahalanobis 
distance-based confidence score. A total of 278 patients were included in the 
trial. The conventional intraoperative H&E diagnosis was used in the control arm 
and the SRH imaging plus CNN was used for the experimental arm. The final 
histopathologic diagnosis was used to label patients into the appropriate patient-
level ground truth class. For example, a patient with final WHO classification of 
glioblastoma, WHO IV, is classified into the malignant glioma class, or a final 
diagnosis of diffuse astrocytoma, WHO II, is classified into the diffuse lower-grade 
glioma class. The strategy does not bias either study arm and allows for a multiclass 
accuracy value to be calculated for each study arm. Three instances arose where 
the control arm diagnosis was limited to ‘glioma’ without further specification. To 
allow for a one-to-one comparison between the two study arms, the ‘glial tumor’ 
inference class was used in the experimental arm for these cases. To eliminate the 
possibility of sampling error in the control arm, all incorrectly classified specimens 
underwent secondary review by two board-certified neuropathologists (S.C.P. and 
P.D.C.) to ensure that the specimen was of sufficient quality to make a diagnosis 
and that tumor tissue was present in the specimen. After completion of the trial, 
we prospectively imaged eight stereotactic needle brain biopsies to validate that our 
workflow in the operations we were sampling was based on stereotactic navigation 
rather than gross inspection of the tissue (see Supplementary Fig. 1). SRH with 
automated CNN diagnosis can play an essential role in these cases to confirm 
diagnostic tissue sampling, provide intraoperative histologic data and cut total 
surgical time in half (that is, from 60–90 min to 20–30 min).

Activation maximization. Activation maximization allows for qualitative 
evaluation of learned representations in deep neural network architectures24. The 
objective is to generate an image that maximally activates a neuron or filter in a 
CNN hidden layer given a set of fixed, trained weights, such that:

x* ¼ argmax
x s:t: RðxÞ

hlj x; θð Þ

where x is the input image, θ denotes the neural network weights, hlj x; θð Þ
I

 is the 
activation of a jth neuron in hidden layer l and R(x) a regularization term. An 
image, x*, can be generated by computing the gradient of hlj x; θð Þ

I
 and updating 

the pixel values of x using iterations of gradient ascent. Our regularization term 
included weight decay, gaussian blur and dark pixel clipping to improve image 
clarity and interpretability40. We used 500 iterations of gradient ascent for each of 
the images shown in Fig. 3 and Extended Data Fig. 7. We chose convolutional layer 
159, a deep hidden layer with sufficient spatial information to identify regions of 
low and high activation within a single image, to evaluate class-specific activation.

Probability heatmaps and semantic segmentation of SRH. Class probability 
heatmaps can localize diagnostic tissue and spatially identify areas with different 
predicted class labels (for example, normal versus tumor-infiltrated tissue). Our 
single-scale sliding window approach allows for an intuitive image patch-to-
heatmap pixel mapping that: (1) is computationally efficient; (2) yields a ninefold 
increase in heatmap pixel spatial resolution relative to patch size; and (3) integrates 
a local neighborhood of overlapping patch predictions for semantic segmentation. 
For example, a 1,000 × 1,000-pixel2 SRS image is divided into a 10 × 10-pixel2 
grid. The image area contained within each heatmap pixel will overlap with one 
(grid corners) to nine (inner 6 × 6 grid) neighboring patches due to valid padding 
and 100-pixel step size (see Extended Data Fig. 9). The softmax output vector 
from each overlapping patch is summed and renormalized to give a probability 
distribution for each heatmap pixel. This procedure yields a prediction heatmap 
for each output class to produce a 10 × 10-xk array, where k is the number of output 
classes. This method can be repeated to produce heatmaps for arbitrarily large 
SRH images. The IOU metric was used to evaluate segmentation performance. 

To produce effective prediction overlays for pathologist review, probabilities 
were uniformly mapped to a 0–255 scale for three diagnostic classes (that is, 
nondiagnostic, nontumor inference class and tumor inference class) to generate  
a three-channel RGB transparency overlay (α = 40%).

Statistics and reproducibility. All measures on central tendency were reported as 
mean ± s.d. CNN training was replicated 10 times and the model with the highest 
validation accuracy was selected for use in the prospective clinical trial. Pearson’s 
correlation coefficient was used to measure linear correlations. A full R code for 
calculated trial sample size can be found in our code repository (see below).  
Please see the Life Sciences Reporting Summary for more details.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
A University of Michigan Institutional Review Boards protocol (no. HUM00083059) 
was approved for the use of human brain tumor specimens in the present study.  
To obtain these samples or SRH images, contact D.A.O. A code repository  
for network training, evaluation and visualizations is publicly available at  
https://github.com/toddhollon/srh_cnn.
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Extended Data Fig. 1 | SRH image dataset and CNN training. The class distribution of (a) training and (b) validation set images are shown as number 
of patches and patients. Class imbalance results from different incidence rates among human central nervous system tumors. The training set contains 
over 50 patients for each of the five most common tumor types (malignant gliomas, meningioma, metastasis, pituitary adenoma, and diffuse lower grade 
gliomas). In order to maximize the number of training images, no cases from medulloblastoma or pilocytic astrocytoma were included in the validation  
set and oversampling was used to augment the underrepresented class during CNN training. c, Training and validation categorical cross entropy loss  
and patch-level accuracy is plotted for the training session that yielded the model used for our prospective clinical trial. Training accuracy converges 
to near-perfect with a peak validation accuracy of 86.4% following epoch 8. Training procedure was repeated 10 times with similar accuracy and cross 
entropy convergence. Additional training did not result in better validation accuracy and early stopping criteria were reached.
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Extended Data Fig. 2 | A taxonomy of intraoperative SRH diagnostic classes to inform intraoperative decision-making. a, representative example SrH 
images from each of the 13 diagnostic class are shown. Both diffuse astrocytoma and oligodendroglioma are shown as examples of diffuse lower grade 
gliomas. Classic histologic features (i.e., piloid process in pilocytic astrocytomas, whorls in meningioma, and microvascular proliferation in glioblastoma) 
can be appreciated, in addition to features unique to SrH images (e.g., axons in gliomas and normal brain tissue). Scale bar, 50 μm. b, A taxonomy of 
diagnostic classes was selected specifically to inform intraoperative decision-making, rather than to match WHO classification. Essential intraoperative 
distinctions, such as tumoral versus nontumoral tissue or surgical versus nonsurgical tumors, allow for safer and more effective surgical treatment. 
Inference node probabilities inform intraoperative distinctions by providing coarse classification with potentially higher accuracy due to summation  
of daughter node probabilities16. The probability of any inference node is the sum of all of its daughter node probabilities.
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Extended Data Fig. 3 | Inference algorithm for patient-level brain tumor diagnosis. A patch-based classifier that uses high-magnification, high-resolution 
images for diagnosis requires a method to aggregate patch-level predictions into a single intraoperative diagnosis. Our inference algorithm performs a 
feedforward pass on each patch from a patient, filters the nondiagnostic patches (line 12), and stores the output softmax vectors in an rN x 13 array. Each 
column of the array, corresponding to each class, is summed and renormalized (line 22) to produce a probability distribution. We then used a thresholding 
procedure such that if greater than 90% of the probability density is nontumor/normal, that probability distribution is returned. Otherwise, the normal/
nontumor class (gray matter, white matter, gliosis) probabilities are set to zero (line 31), the distribution renormalized, and returned. This algorithm 
leverages the observation that normal brain and nondiagnostic tissue imaged using SrH have similar features across patients resulting in high patch-level 
classification accuracy. Using the expected value of the renormalized patient-level probability distribution for the intraoperative diagnosis eliminates the 
need to train an additional classifier based on patch predictions.
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Extended Data Fig. 4 | Prospective clinical trial design and recruitment. a, Minimum sample size was calculated under the assumption that pathologists’ 
multiclass diagnostic accuracy ranges from 93% to 97% based on our previous experiments6 and that a clinically significant lower accuracy bound 
was less than 91%. We, therefore, selected an expected accuracy of 96% and equivalence/noninferiority limit, or delta, of 5%, yielding a noninferiority 
threshold accuracy of 91% or greater. Minimum sample size was 264 (black point) patients using an alpha of 0.05 and a power of 0.9 (beta = 0.1). 
b, Flowchart of specimen processing in both the control and experimental arms is shown. c, A total of 302 patients met inclusion criteria and were 
enrolled for intraoperative SrH imaging. Eleven patients were excluded at the time of surgery due to specimens that were below the necessary quality 
for SrH imaging. A total of 291 patients were imaged intraoperatively and 13 patients were subsequently excluded due to a Mahalanobis distance-based 
confidence score (See Extended Data Figure 5), resulting in a total of 278 patients included. d, Meningioma, pituitary adenomas, and malignant gliomas 
were the most common diagnoses in our prospective cohort. University of Michigan, University of Miami, and Columbia University recruited 55.0%, 
26.6%, 18.4% of the total patients, respectively.
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Extended Data Fig. 5 | Mahalanobis distance-based confidence score. a, Pairwise comparison and b, principal component analysis of class-conditional, 
Mahalanobis distance-based, confidence score for each layer output included in the ensemble. The confidence score from the mid- and high-level hidden 
features are correlated, which demonstrate that out-of-distribution samples result in greater Mahalanobis distances throughout the network. As previously 
described and observed in our results, out-of-distribution (i.e. rare tumors) are better detected in the representation space of deep neural networks, rather 
than the “label-overfitted” output space of the softmax layer23. c, Specimen-level predictions (black hashes, n = 478) and kernel density estimate from 
the trained LDA classifier for all specimens imaged during the trial period projected onto the linear discriminant axis. Trial and rare tumor cases were 
linearly separable resulting in all 13 rare tumor cases imaged during the trial period correctly identified. d, SrH mosaics of rare tumors imaged during the 
trial period are shown. Germinomas show classic large round neoplastic cells with abundant cytoplasm and fibrovascular septae with mature lymphocytic 
infiltrate. Choroid plexus papilloma shows fibrovascular cores lined with columnar cuboidal epithelium. Papillary craniopharyngioma have fibrovascular 
cores with well-differentiated monotonous squamous epithelium. Clival chordoma has unique bubbly cytoplasm (i.e. physaliferous cells). Scale bar, 50 μm.
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Extended Data Fig. 6 | see figure caption on next page.
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Extended Data Fig. 6 | Error analysis of pathologist-based classification of brain tumors. a, The true class probability and intersection over union 
values for each of the prospective clinical trial patients incorrectly classified by the pathologists. All 17 were correctly classified using SrH plus CNN. All 
incorrect cases underwent secondary review by two board-certified neuropathologists (S.C.P., P.C.) to ensure the specimens were 1) of sufficient quality 
to make a diagnosis and 2) contained tumor tissue. b, SrH mosaic from patient 21 (glioblastoma, WHO IV) is shown. Pathologist classification was 
metastatic carcinoma; however, CNN metastasis heatmap does not show high probability. Malignant glioma probability heatmap shows high probability 
over the majority of the SrH mosaic, with a 73.4% probability of patient-level malignant glioma diagnosis. High-magnification views show regions of 
hypercellularity due to tumor infiltration of brain parenchyma with damaged axons, activated lipid-laden microglia, mitotic figures, and multinucleated 
cells. c, SrH mosaic from patient 52 diagnosed with diffuse large B-cell lymphoma predicted to be metastatic carcinoma by pathologist. While CNN 
identified patchy areas of metastatic features within the specimen, the majority of the image was correctly classified as lymphoma. High-magnification 
views show atypical lymphoid cells with macrophage infiltration. regions with large neoplastic cells share cytologic features with metastatic brain tumors, 
as shown in Fig. 3. Scale bar, 50 μm.
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Extended Data Fig. 7 | Activation maximization to elucidate SRH feature extraction using Inception-ResNet-v2. a, Schematic diagram of Inception-
resNet-v2 shown with repeated residual blocks compressed. residual connections and increased depth resulted in better overall performance compared 
to previous Inception architectures. b, To elucidate the learned feature representations produced by training the CNN using SrH images, we used 
activation maximization24. Images that maximally activate the specified filters from the 159th convolutional layer are shown as a time series of iterations 
of gradient ascent. A stable and qualitatively interpretable image results after 500 iterations, both for the CNN trained on SrH images and for ImageNet 
images. The same set of filters from the CNN trained on ImageNet are shown in order to provide direct comparison of the trained feature extractor for 
SrH versus natural image classification. c, Activation maximization images are shown for filters from the 5th, 10th, and 159th convolutional layers for 
CNN trained using SrH images only, SrH images after pretraining on ImageNet images, and ImageNet images only. The resulting activation maximization 
images for the ImageNet dataset are qualitatively similar to those found in previous publications using similar methods34. CNN trained using only SrH 
images produced similar classification accuracy compared to pretraining and activation maximization images that are more interpretable compared to 
those generated using a network pretrained on ImageNet weights.
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Extended Data Fig. 8 | t-SNE plot of internal CNN feature representations for clinical trial patients. We used the 1536-dimensional feature vector 
from the final hidden layer of the Inception-resNet-v2 network to determine how individual patches and patients are represented by the CNN 
using t-distributed stochastic neighbor embedding (t-SNE), an unsupervised clustering method to visualize high-dimensional data. a, One hundred 
representative patches from each trial patient (n = 278) were sampled for t-SNE and are shown in the above plot as small, semi-transparent points. Each 
trial patient is plotted as a large point located at their respective mean patch position. recognizable clusters form that correspond to individual diagnostic 
classes, indicating that tumor types have similar internal CNN representations. b, Gray and white matter form separable clusters from tumoral tissue, 
but also from each other. lipid-laden myelin in white matter has significantly different SrH features compared to gray matter with axons and glial cells 
in a neuropil background. c, Diagnostic classes that share cytologic and histoarchitectural features form neighboring clusters, such as malignant glioma, 
pilocytic astrocytoma, and diffuse lower grade glioma (i.e., glial tumors). Lymphoma and medulloblastoma are adjacent and share similar features of 
hypercellularity, high nuclear:cytoplasmic ratios, and little to no glial background in dense tumor.
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Extended Data Fig. 9 | see figure caption on next page.
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Extended Data Fig. 9 | Methods and results of SRH segmentation. a, A 1000 × 1000-pixel SrH image is shown with the corresponding grid of probability 
heatmap pixels that results from using a 300 × 300-pixel sliding window with 100-pixel step size in both horizontal and vertical directions. Scale bar, 
50 μm. b, An advantage of this method is that the majority of the heatmap pixels are contained within multiple image patches and the probability 
distribution assigned to each heatmap pixel results from a renormalized sum of overlapping patch predictions. This has the effect of pooling the local 
prediction probabilities and generates a smoother prediction heatmap. c, For our example, each pixel of the inner 6 × 6 grid has 9 overlapping patches from 
which the probability distribution is determined. d, An SrH image of a meningioma, WHO grade I, from our prospective trial is shown as an example. Scale 
bar, 50 μm. e, The meningioma probability heatmap is shown after bicubic interpolation to scale image to the original size. Nondiagnostic prediction and 
ground truth is for the same SrH mosaic and is shown. f, The SrH semantic segmentation results of the full prospective cohort (n = 278) are plotted. The 
upper plot shows the mean IOU and standard deviation (i.e., averaged over SrH mosaics from each patient) for ground truth class (i.e., output classes). 
Note that the more homogenous or monotonous histologic classes (e.g., pituitary adenoma, white matter, diffuse lower grade gliomas) had higher IOU 
values compared to heterogeneous classes (e.g., malignant glioma, pilocytic astrocytoma). The lower plot shows the mean inference class IOU and 
standard deviation (i.e., either tumor or normal inference class) for each trial patient. Mean normal inference class IOU for the full prospective cohort was 
91.1 ± 10.8 and mean tumor inference class IOU was 86.4 ± 19.0. g, As expected, mean ground truth class IOU values for the prospective patient cohort 
(n = 278) were correlated with patient-level true class probability (Pearson correlation coefficient, 0.811).
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Extended Data Fig. 10 | Localization of metastatic brain tumor infiltration in SRH images. a, Full SrH mosaic of a specimen collected at the brain–tumor 
margin of a patient with a metastatic brain tumor (non-small cell lung adenocarcinoma). b, Metastatic rests with glandular formation are dispersed among 
gliotic brain with normal neuropil. c, Three-channel rGB CNN-prediction transparency is overlaid on the SrH image for pathologist review intraoperatively 
with associated (d) patient-level diagnostic class probabilities. e, Class probability heatmap for metastatic brain tumor (IOU 0.51), nontumor (IOU 0.86), 
and nondiagnostic (IOU 0.93) regions within the SrH image are shown with ground truth segmentation. Scale bar, 50 μm.
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