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Rapid, label-free detection of diffuse glioma recurrence 
using intraoperative stimulated Raman histology and 
deep neural networks
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Abstract
Background. Detection of glioma recurrence remains a challenge in modern neuro-oncology. Noninvasive radio-
graphic imaging is unable to definitively differentiate true recurrence versus pseudoprogression. Even in biopsied 
tissue, it can be challenging to differentiate recurrent tumor and treatment effect. We hypothesized that intraoperative 
stimulated Raman histology (SRH) and deep neural networks can be used to improve the intraoperative detection 
of glioma recurrence.
Methods. We used fiber laser–based SRH, a label-free, nonconsumptive, high-resolution microscopy method 
(<60 sec per 1 × 1 mm2) to image a cohort of patients (n = 35) with suspected recurrent gliomas who underwent 
biopsy or resection. The SRH images were then used to train a convolutional neural network (CNN) and develop 
an inference algorithm to detect viable recurrent glioma. Following network training, the performance of the CNN 
was tested for diagnostic accuracy in a retrospective cohort (n = 48).
Results. Using patch-level CNN predictions, the inference algorithm returns a single Bernoulli distribution for 
the probability of tumor recurrence for each surgical specimen or patient. The external SRH validation dataset 
consisted of 48 patients (recurrent, 30; pseudoprogression, 18), and we achieved a diagnostic accuracy of 
95.8%.
Conclusion. SRH with CNN-based diagnosis can be used to improve the intraoperative detection of glioma re-
currence in near-real time. Our results provide insight into how optical imaging and computer vision can be com-
bined to augment conventional diagnostic methods and improve the quality of specimen sampling at glioma 
recurrence.

Key Points

1.  SRH captures the diagnostic features of recurrent glioma and pseudoprogression.

2.  Cross-validation was used to train a CNN and develop an inference algorithm.

3.  SRH-CNN pipeline achieved a diagnostic accuracy of 95.8% (46/48).
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Recurrence in gliomas is the rule rather than the excep-
tion.1 Detection of tumor recurrence, however, remains a 
challenge. In 2010, updated response assessment criteria 
were established in an attempt to formalize the radiographic 
definition of tumor progression.2 Even with the Response 
Assessment in Neuro-Oncology (RANO) criteria, there is a 
high incidence of false positive radiographic findings where 
pseudoprogression or radiation necrosis is mistaken for 
tumor recurrence.

Because chemotherapy and/or radiation for gliomas 
may result in radiographic changes that mimic tumor 
progression, such as an increase in tumor enhance-
ment in up to 30% of patients, surgery is often neces-
sary to establish definitive diagnoses.2–5 The diagnostic 
limitations of noninvasive radiographic methods, in-
cluding structural MRI or perfusion MRI, necessitate sur-
gical tissue sampling in select patients to identify viable 
recurrent tumor.

During surgery, accurate tissue diagnosis is essential 
given the differences in the operative goals in patients with 
pseudoprogression and recurrent glioma. Generally, patients 
with recurrent glioma benefit from safe maximal resection,6–9 
whereas a more conservative surgical approach is taken 
in patients with pseudoprogression, since it often resolves 
spontaneously. We have recently observed in a prospective 
clinical trial that pseudoprogression and recurrent glioma 
are frequently confused using conventional intraoperative 
histologic techniques.10 Determining radiation versus tumor 
progression intraoperatively can be challenging for the 
pathologists as some features of those entities overlap, like 
gliosis, necrosis, and abnormal vasculature.

To improve intraoperative diagnostic accuracy and better 
inform surgical decision making, we hypothesized that the 
combination of rapid, label-free, optical imaging and deep 
learning–based computer vision methods can be used to 
differentiate recurrent glioma and pseudoprogression. 
Stimulated Raman histology (SRH) is a rapid, label-free op-
tical imaging method that provides high-resolution, digital 
images of fresh surgical specimens. SRH generates image 
contrast by detecting differences in the concentration of 
macromolecules (lipids, proteins, nucleic acids, etc) in bi-
omedical specimens. Recent advances in fiber laser‒based 
optical imaging have allowed for clinical SRH imaging in 
the operating room.

We recently showed that SRH combined with CNN 
can be used as a fully automated and rapid method for 
intraoperative brain tumor diagnosis.10 Here, we dem-
onstrate the ability of an enhanced automated tissue-
to-diagnosis pipeline, incorporating SRH and CNNs, to 
identify recurrent tumor in fresh surgical specimens.

Materials and Methods

Study Design

We designed our study with the aim to (i) characterize 
the SRH cytologic and histoarchitectural features of re-
current gliomas, gliotic brain, and treatment effect/
pseudoprogression, (ii) develop an intraoperative com-
puter vision system to automate the detection of tumor 
recurrence in intraoperative specimens using SRH and 
deep neural networks, and (iii) perform a rigorous valida-
tion of the intraoperative system using cross-validation, 
external validation data (separate tertiary brain tumor 
center and imaging system), and an independent testing 
set. SRH imaging was performed at 2 tertiary medical 
centers: Michigan Medicine and New York-Presbyterian/
Columbia University. Institutional review board approval 
was obtained from both centers (UM: HUM0005731, 
Columbia: AAAJ6163 and AAAR7365). Informed consent 
was obtained prior to tissue collection for all patients. The 
UM dataset was collected from 2 SRH imagers, a prototype 
SRH imager,11 and a NIO Laser Imaging System (Invenio 
Imaging). Inclusion criteria for the study were (i) any pa-
tient with a previous diagnosis of glioma who (ii) then 
underwent open biopsy or resection for suspected recur-
rence based on clinical or radiographic assessment. A pa-
tient could be excluded only if the collected specimen was 
grossly inadequate for SRH imaging due to excessive co-
agulation or hemorrhage. Location of tissue sampling was 
left to the surgeon’s discretion.

Specimens from Columbia University had been previ-
ously collected and frozen as part of a parallel, ongoing 
glioma recurrence study. Specimens were collected from 
both the core and the margin of resection cavities using 
stereotactic guidance. Specimens were thawed and under-
went SRH imaging retrospectively. Columbia SRH images 

Importance of the Study

Diagnosing glioma tumor recurrence versus 
pseudoprogression is essential to determine treatment 
options and prognosis. Radiographic imaging does 
not provide a definitive diagnosis, and intraoperative 
neuropathologic evaluation using standard frozen 
sections has limitations and requires interpretation by 
expert neuropathologists, who are lacking at many neu-
rosurgery centers. Additionally, optimal tissue collec-
tion at glioma recurrence is essential for patient care. 
We demonstrate how combining SRH, a rapid optical 
imaging method, and deep neural networks can be used 

to augment the intraoperative interpretation of sur-
gical specimens in patients with suspected recurrent 
gliomas. A CNN was trained using cross-validation on 
an SRH training set and an inference algorithm was de-
veloped to provide patient-level diagnosis. Our trained 
CNN achieved a diagnostic accuracy of 95.8% on an 
external SRH testing set. These results demonstrate 
how SRH with CNN-based diagnosis can improve the 
intraoperative detection of glioma recurrence in near-
real time.
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were specifically used as a large, external, independent 
testing dataset to evaluate model performance and gener-
alizability. For ground truth labeling of the SRH specimens, 
SRH images were reviewed by one pathologist (S.C.P.) spe-
cifically for the presence of viable recurrent tumor in the 
imaged specimen. If recurrent tumor was identified in the 
SRH specimen, then the SRH image was labeled as recur-
rence. Otherwise, a pseudoprogression label was assigned 
to those specimens that lacked viable recurrent tumor. 
A  patient with one or more specimens containing recur-
rent tumor was given a patient-level label of recurrence. 
Information on patients included in the study can be found 
in Supplementary Tables 1 and 2.

Intraoperative SRH Imaging

Fresh surgical tissue was loaded into a custom imaging 
chamber and placed in a NIO imaging system (Invenio 
Imaging). The tissue was excited with a dual-wavelength 
fiber laser with a fixed wavelength pump beam at 
790  nm and a Stokes beam tunable from 1015  nm to 
1050 nm. This configuration allows for spectral access to 
Raman shifts in the range from 2800 cm−1 to 3130 cm−1.12 
Beam scanning with a spatial sampling of 450 nm/pixel, 
1000 pixels per strip, and an imaging speed for 0.4 
MPixel/s/Raman shift was used to acquire images. For 
SRH, samples were imaged sequentially at the 2 Raman 
shifts: 2850 cm−1 and 2950 cm−1. Lipid-rich brain regions 
(eg, myelinated white matter) demonstrate high stimu-
lated Raman scattering signal at 2845  cm−1 due to CH2 
(methylene) symmetric stretching in fatty acids. Cellular 
regions produce high 2930 cm−1 intensity and large S2930/
S2845 ratios to high protein and DNA content. A  virtual 
hematoxylin and eosin (H&E) color scheme was applied 
to transform the raw stimulated Raman scattering im-
ages to SRH images for intraoperative use and patholog-
ical review.11

Image Preprocessing

All images were preprocessed prior to CNN training and 
prediction.10 The 2845-cm−1 image was subtracted from 
the 2930-cm−1 image, and the resultant image was con-
catenated depthwise to generate a 3-channel image 
(2930 cm−1 –2845 cm−1, red; 2845 cm−1, green; 2930 cm−1, 
blue). A  300 × 300-pixel sliding window algorithm with 
100-pixel step size (both horizontal and vertical direction) 
and valid padding was used to generate image patches for 
model training and inference.

This single-scale sliding window method over high-
resolution, high-magnification images provides a large 
dataset for model training and preserves high-frequency 
image features (eg, chromatin structure, axonal density) 
without downsampling. Additionally, multiscale CNN im-
plementations have not yielded better performance for 
image classification tasks involving histologic images.13 To 
optimize image contrast, the bottom and top 3% of pixels 
by intensity from each channel were clipped and images 
rescaled. All images were mean-zero centered by sub-
tracting the channel-wise mean of the training set.

CNN Training, Cross-Validation, and External 
Testing Dataset

The Inception-ResNet-v2 CNN architecture was used for 
the task of image classification on 300 × 300-pixel SRH 
image patches.14 The CNN was initially pretrained on 3.5 
million SRH images from 14 histologic subtypes.10 The 
pretrained convolutional layers (ie, trained SRH feature 
extractor) were retained and the final classification layers 
were modified to classify into 3 diagnostic classes: tumor 
recurrence, pseudoprogression, and nondiagnostic 
tissue.15 A total of 406 080 patches from 35 patients were 
used for model training and validation. We then per-
formed 5 iterations of k-fold cross-validation with k = 7. 
For each fold, 30 patients were used for training and 5 
patients for validation, yielding 5 predictions for each 
patient. During network training, we used multiple label-
preserving affine transformations for data augmentation, 
including any uniformly distributed random combination 
of rotation, shift, and reflection. Models were trained for 
a fixed number of epochs (n = 3) for each fold without 
hyperparameter tuning to avoid model fitting to the val-
idation set. After cross-validation, the best performing 
CNN was selected for external validation on a true testing 
set. Our external dataset from Columbia University con-
tained specimens from 48 patients. This dataset was 
ideal for model testing, as it contained specimens sam-
pled from both the periphery and the tumor core, re-
sulting in less class imbalance. The model was tested for 
patient-level classification accuracy using our inference 
algorithm detailed in Supplementary Figure 1. Code re-
pository can be found at https://github.com/toddhollon/
srh_recurrence.

Inference Algorithm

An SRH patch-based classifier requires a method to ag-
gregate CNN predictions from each patch in order to 
provide a single specimen or patient diagnosis.10 We, 
therefore, developed an inference algorithm to classify 
individual specimens and individual patients with poten-
tially multiple specimens into either tumor recurrence or 
pseudoprogression. The CNN softmax output for each 
SRH patch is a probability distribution over the diagnostic 
classes. A  feedforward CNN pass is performed for all 
patches from a given specimen, the nondiagnostic patches 
are removed, and the remaining output softmax vectors 
summed elementwise to generate an unnormalized prob-
ability distribution over the entire specimen. The residual 
nondiagnostic probability is set to zero, and the probability 
distribution is renormalized over the recurrent tumor and 
pseudoprogression classes, generating a valid Bernoulli 
probability distribution for each specimen. A  diagnostic 
threshold can then be chosen using receiver operating 
characteristic (ROC) analysis or at the desired true positive 
or false positive rate. Patient-level diagnosis is achieved 
by performing above-mentioned procedure for each spec-
imen from a patient. If any one specimen is labeled as 
recurrent tumor, then a patient-level diagnosis of tumor re-
currence is given.
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Visualization of Learned SRH Feature 
Representations by t-Distributed Stochastic 
Neighbor Embedding 

To improve the interpretability of features learned by the 
CNN and the classification results, we used a dimension-
ality reduction and data visualization method, t-distributed 
stochastic neighbor embedding (t-SNE), to visualize how 
SRH images are represented in the hidden layers of the 
CNN. We randomly selected 500 SRH patches from the 
following histologic groups: normal gray matter, normal 
white matter, gliotic brain, necrotic tissue, dense hyalinized 
vasculature, recurrent low-grade glioma, and recurrent 
high-grade glioma. Each patch was passed through the 
CNN, and the 1536-dimensional feature vector from the 
final hidden layer was used to embed each SRH patch into 
a 2-dimensional graph for visualization. While this is a fully 
unsupervised technique, class labels were applied to dem-
onstrate the relationship between histologic subtype and 
the clustering pattern.

Semantic Segmentation of SRH Images

A semantic segmentation technique was developed spe-
cifically for SRH images to segment regions of tumor re-
currence, pseudoprogression, and nondiagnostic areas. 
Using a dense sliding window algorithm for patch gener-
ation at both training and inference times results in each 
pixel having an associated probability that is a function 
of the local overlapping patch predictions. This produces 
a pixel-level probability heatmap for each diagnostic 
class at no additional computational cost. We have pre-
viously described a similar technique for SRH images 
in the setting of multiclass brain tumor subtype classi-
fication.10 The proposed method for tumor recurrence is 
simpler and more efficient because it utilizes the trained 
output classes from the CNN without the need for infer-
ence classes. The probability of recurrent tumor (red), 
psuedoprogression (green), and nondiagnostic (blue) is 
uniformly mapped to an RGB lookup table and used as a 
semi-transparent overlay to assist surgeons and patho-
logists interpreting SRH images with associated CNN 
predictions.

Results

SRH Features of Glioma Recurrence and 
Treatment Effect

We first assessed the ability of SRH to effectively image 
the cytologic and histoarchitectural features associated 
with both recurrent tumors and pseudoprogression. 
Fig.  1 shows SRH images of recurrent lower-grade and 
malignant gliomas adjacent to histopathologic changes 
induced by chemoradiation. Regions of viable recurrent 
tumor imaged using SRH contain the traditionally de-
scribed H&E histopathologic findings for each tumor type. 
Oligodendrogliomas, World Health Organization (WHO) 
grade II, demonstrate “fried egg”–like cells and character-
istic branching, small, “chicken wire”–like blood vessels. 

Anaplastic astrocytomas, WHO grade III, show cellular 
anaplasia, hypercellularity, mitotic activity, and infiltra-
tion of normal brain parenchyma (eg, normal axons seen 
within tumor-infiltrated regions). Glioblastomas, WHO 
grade IV, have the classic atypia, mitotic figures, necrosis, 
and/or microvascular proliferation. Importantly, SRH im-
aged histopathologic features that commonly result from 
chemoradiation: giant cells with large nuclei and ample 
cytoplasm, necrosis, hyalinized vasculature, and reactive 
astrocytosis.

Pipeline for Automated Intraoperative Detection 
of Tumor Recurrence

After demonstrating that SRH can image the histologic 
features of recurrence and pseudoprogression, we de-
veloped an intraoperative pipeline, called the SRH-CNN 
pipeline, to automate the detection of tumor recurrence 
using SRH and CNN (Fig. 2). Fresh, unprocessed surgical 
specimens are passed off the operative field and a small 
sample (eg, 3 mm3) is compressed into a custom micro-
scope slide. After inserting the slide into the SRH imager, 
images are acquired at 2 Raman shifts, 2845  cm−1 and 
2930  cm−1, to generate high-resolution digital images. 
SRH whole-slide images are then processed via a dense 
sliding window algorithm to generate overlapping, 
single-scale, and high-magnification patches used for 
CNN training and inference. In the prediction stage, 
individual patches are passed through the trained 
Inception-ResNet-v2 network for image classification.14 
Following feedforward CNN pass on each SRH patch, 
the patch-level predictions are used as input for an in-
ference algorithm designed to return a single whole-
slide or patient-level diagnosis. The inference algorithm 
optimized for prediction on SRH images is shown in 
Supplementary Figure 1.

CNN Training and Cross-Validation Results

Using our 35-patient training set (Supplementary Table 1), 
we performed 5 iterations of cross-validation to confirm 
optimal CNN training and identify an ideal probability 
threshold for diagnosis of glioma recurrence (Fig. 3). Our 
dataset contained 26 patients with glioma recurrence 
and 9 with pseudoprogression. Cross-validation results 
showed stable training and validation results over each 
iteration, with area under the curve (AUC) values ranging 
95.6–96.2% for specimen-level diagnosis and 96.2–98.7% 
for patient-level diagnosis. Fig. 3B plots the probability of 
recurrence for each patient and each cross-validation iter-
ation as determined by our inference algorithm. Patient 
30 was excluded from the final thresholding analysis due 
to having a consistently low probability of recurrence 
and was an outlier in the recurrence group. Error anal-
ysis demonstrated that the final histopathologic diag-
nosis was recurrent low-grade glioneuronal tumor, WHO 
grade I, and the patient had not received chemotherapy 
or radiation. We chose a recurrence probability threshold 
of 30%, corresponding to a sensitivity of 100.0%, speci-
ficity of 82.2%, and accuracy of 92.4% on the validation 
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set. This threshold was tuned to maximize sensitivity 
to avoid false negatives intraoperatively and poten-
tially miss a diagnosis of glioma recurrence. To improve 
model interpretability, we used t-SNE to embed the most 
common histopathologies seen in pseudoprogression 
and glioma recurrence in a 2D graph based on the learned 
internal CNN representations (Fig. 4). Patches within each 
histopathologic subtype form discrete clusters based 

on the internal CNN 1536-dimensional feature vector. 
The t-SNE results indicate that similar histopathologies 
share common feature representations in the final CNN 
hidden layer. Using our cross-validation SRH dataset, 
our semantic segmentation method was able to identify 
regions of diagnostic, dense tumor recurrence within 
whole-slide SRH images (Fig.  5). Glioma recurrence ad-
jacent to gliotic peritumoral regions was segmented with 
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Fig. 1 Histopathologic features of recurrent glioma and pseudoprogression in stimulated Raman histology (SRH) images. SRH images of recur-
rent (A) oligodendroglioma, WHO grade II, (B) anaplastic astrocytoma, WHO grade III, and (C) glioblastoma, WHO grade IV. SRH captures cytologic 
and histoarchitectural features not seen in conventional H&E histology, such as myelinated axons and lipid-laden macrophages. Mitotic figures 
are seen due to submicron spatial resolution and virtual H&E staining that highlights chromatic structure. (D) Optical sectioning allows for detec-
tion of microvascular proliferation. (E) Treatment effect can produce marked pleomorphism, giant and multinucleated cells with ample cytoplasm. 
(F) Necrosis seen adjacent to dense viable tumor. (G) Reactive astrocytosis, a classic finding in pseudoprogression and the peritumoral region, is 
well characterized in SRH images by long astrocytic processes from nonneoplastic glial cells. (H) Dense hyalinized blood vessels and (I) necrosis 
postradiation. Scale bars = 50 μm.
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high confidence, improving the clinician’s review of CNN 
predictions.

External Validation of SRH with CNN-Based 
Diagnosis of Glioma Recurrence

Following CNN training and cross-validation, we aimed 
to test our SRH-CNN pipeline on an external SRH dataset 
from New York-Presbyterian/Columbia University. 
Moreover, a semantic segmentation technique was im-
plemented on the external dataset to improve surgeon 
and pathologist ability to rapidly identify regions of 
tumor recurrence within SRH whole-slide images (Fig. 6). 
Probability heatmaps for recurrence, pseudoprogression, 
and nondiagnostic regions are overlaid as a RGB trans-
parency onto the whole-slide SRH image. Regions high-
lighted red correspond to areas of high probability of 
tumor recurrence. Forty-eight patients (30 labeled recur-
rent, 18 labeled pseudoprogression) were included in the 
external testing set. A recurrence probability threshold of 
30%, as determined by our cross-validation experiments, 
was used to provide a final intraoperative diagnosis 
of glioma recurrence. Our SRH-CNN pipeline resulted 
in a sensitivity of 100% (30/30), specificity of 88.9% 
(16/18), and overall accuracy of 95.8% (46/48). Regions 
of viable tumor were segmented in patients with both 
lower-grade and malignant glioma recurrence. Gliotic 
brain regions with reactive astrocytes were identified in 
pseudoprogression patients without evidence of tumor 

recurrence. Importantly, regions of mixed glioma recur-
rence and treatment effect were effectively segmented in 
the same specimen and expectedly resulted in interme-
diate diagnostic probabilities.

Discussion

Here, we demonstrated how SRH and deep neural net-
works combine to form a complementary intraoperative 
pathway for the diagnosis of glioma recurrence that is in-
dependent of a traditional pathology laboratory. Clinical 
SRH was able to image the most diagnostic features asso-
ciated with recurrent glial tumors and treatment-induced 
histologic findings commonly seen in pseudoprogression. 
Cross-validation was performed for CNN training and 
to identify a clinically optimal patient-level probability 
threshold for diagnosing glioma recurrence. Using SRH 
image data collected from an external validation medical 
center, we showed that our SRH-CNN pipeline was able to 
achieve a testing set diagnostic accuracy of 95.8%. Regions 
of dense tumor, in both lower-grade and malignant glioma, 
were segmented to highlight regions of high probability of 
recurrence and improve the clinician’s interpretation of au-
tomated diagnostic results.

A major challenge in glioma surveillance is that conven-
tional structural MRI does not provide sufficient molecular 
or metabolic data for diagnostic purposes, with sensitivity 
and specificity of 68% (95% CI: 51–81) and 77% (45–93), 
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Fig. 2 SRH and CNN pipeline for automated detection of recurrent glioma. Rapid, bedside, label-free optical images are generating using clinical 
SRH imager. A 1 × 1-mm SRH image is captured in approximately 60 seconds. SRH patches (300 × 300-pixel) are produced using a dense sliding 
window algorithm and each SRH patch undergoes a feedforward CNN pass. The final softmax layer outputs a categorical probability distribution 
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D
ow

nloaded from
 https://academ

ic.oup.com
/neuro-oncology/article/23/1/144/5872473 by U

niversity of M
ichigan user on 22 D

ecem
ber 2022



 150 Hollon et al. Rapid detection of diffuse glioma recurrence

respectively.16 As a result, advanced MRI methods have 
been used for glioma surveillance and produce better di-
agnostic performance compared with structural MRI. In 
a survey of 220 medical centers, perfusion MRI was re-
garded as the advanced modality of choice to distinguish 
radiation effects from tumor progression by the majority 
of centers, with sensitivity of 87% (82–91) and specificity 

of 86% (77–91).16,17 Magnetic resonance spectroscopy can 
produce higher diagnostic accuracy than structural MRI 
but is less suitable for routine and universal application in 
glioma surveillance.

Without a definitive noninvasive method to detect 
glioma recurrence, tissue diagnosis is needed in pa-
tients with an equivocal radiographic and clinical course. 
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Fig. 3 CNN training and cross-validation results. Five iterations of cross validation were performed. In our implementation, k was 7, which yields 
30 training cases and 5 validation cases for each fold. CNN was trained for 3 epochs without additional training callbacks or hyperparameter tuning 
to avoid overfitting the held-out data sets. (A) Patch-, specimen-, and patient-level ROC curves are shown for each cross-validation iteration. 
ROC-AUC was similar across each iteration and expectedly increases as the predictions scale up from patch- to patient-level predictions, with a 
maximum patient-level AUC of 98.7%. (B) Accuracy results for each patient and each cross-validation (CV) iteration. Pseudoprogression patients 
(blue, patients 1–9) and recurrence patients (red, patients 10–35) are presented as rows and each CV iteration is a column. Whether the patient was 
correctly classified for each iteration is color coded (gray, correct; black, incorrect). CV iterations A and C had the highest accuracy of 97.1% (34/35 
patients). (C) Patient-level prediction probability of recurrence is plotted for each CV iteration with the mean ± standard deviation (black point and 
line). Patient 30 was consistently predicted to have a low probability of recurrence, while the remaining recurrence patients had a high prediction 
probability. Based on the results displayed in (C), we choose a recurrence probability threshold of 30% to be used in the external testing set.
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Moreover, the frequency of tissue sampling at time of re-
currence is likely to increase in the era of personalized 
medicine. RANO investigators state that “the subop-
timal employment of histological and molecular assess-
ment at recurrence represents a missed opportunity to 
proactively guide patient management and increase 
knowledge. . . . Progress in this area will almost certainly 
require improved specimen sampling.” 1 They claim that 
neuro-oncology is lagging behind other oncology special-
ties that routinely use tissue-based analyses to document 
the molecular and cellular features at disease recurrence. 
In addition to the increase in the number of patients 
who undergo tissue sampling for recurrent gliomas, the 
number of specimens per patient may increase due to the 
known spatial histologic and molecular heterogeneity of 
gliomas.18–21 Determining the diagnostic yield for each 
specimen at the time of surgery is essential to ensure 
that the optimal amount of viable tissue is available for 
subsequent tissue analyses. Consistently sending mul-
tiple intraoperative specimens is not feasible using our 
current pathology workflow. Additionally, our labor, time, 
and resource limitations are unlikely to improve in the 
foreseeable future. Both globally and within the US, there 
is an uneven distribution of expert pathologists available 

to provide intraoperative diagnosis. For example, many 
centers performing brain tumor surgery currently have 
no neuropathologist on staff, and further shortages are 
expected as there is a 42% vacancy rate in neuropa-
thology fellowship programs.22,23

Recent advances in deep learning and computer vision 
have resulted in human-level performance on diagnostic 
tasks in ophthalmology,24 radiology,25 dermatology,26 and 
pathology.10,27–29 These advances provide insight into how 
artificial intelligence can ameliorate the effect of labor 
shortages in health care and augment standard-of-care di-
agnostic techniques. Here, we show that fiber laser–based 
clinical optical imaging combined with state-of-the-art 
deep learning methods can augment the diagnostic accu-
racy of the detection of recurrent gliomas intraoperatively 
in a fully automated fashion. Multiple specimens can be 
imaged in an order of magnitude in less time than conven-
tional methods, decreasing the likelihood of intraoperative 
sampling error. Rapid SRH imaging allows for multiple 
specimens to be collected with confirmed diagnostic 
tissue for subsequent molecular analysis and assessment 
for spatial heterogeneity.21

A limitation of our study is the challenge of determining 
a definitive labeling strategy for tumor recurrence. This is 
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Fig. 4 Visualization of final hidden layer CNN representations of SRH patches. The t-SNE plot of sampled patches from 7 histologic subtypes en-
countered in glioma recurrence and pseudoprogression. Discrete clusters based on the 1536-dimensional feature vector from the final hidden layer. 
Each of the 7 subtypes are color coded for easier interpretation of the t-SNE plot. This graph indicates that the trained CNN learned to represent 
common histologies with specific feature vectors, thereby improving the diagnostic accuracy of the final softmax classification layer.
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a challenge inherent to a study investigating glioma recur-
rence, which is a complex and heterogeneous diagnosis. 
We aimed to keep the labeling task as simple as possible 
(ie, binary labeling) to avoid introducing additional levels 
of complexity and opted to have a single reviewer label 
the SRH images to maintain a consistent ground truth. As 
has been the case in our previous SRH studies, we believe 

that the detection of tumor is easier in SRH images com-
pared with conventional H&E histology for both clinicians 
and computer-aided diagnostic systems because speci-
mens are imaged fresh without tissue processing that has 
the potential to induce artifacts. Additional studies will 
be needed to confirm that our results generalize to other 
medical centers.
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Fig. 5 Semantic segmentation of SRH images for regions of glioma recurrence. (A) Probability heatmaps are shown for each of the 3 output 
classes. Because patch-level predictions are generated from a dense, overlapping sliding window algorithm, every pixel in the image has a prob-
ability distribution over the output classes that is a function of the local neighborhood of overlapping patch predictions. This method produces a 
higher resolution and smoother heatmap. Each probability heatmap is mapped to a specific RBG channel to produce a prediction overlay for the 
SRH whole-slide image. (B) An example of an SRH image taken from a patient with recurrent glioblastoma, WHO IV. A dense region of recurrent 
tumor (red) was identified adjacent to nondiagnostic hemorrhagic and necrotic tissue (blue) and gliotic brain (green). Our semantic segmentation 
method allows for the interpretation of SRH images in the context of CNN predictions with spatial information regarding regions of recurrent tumor. 
Scale bars = 50 μm.
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Fig. 6 External validation of SRH with CNN-based diagnosis of glioma recurrence. (A) SRH-CNN prediction for each of the patients in the ex-
ternal validation set. The probability of recurrence is plotted on the vertical axis. Ground truth label is color coded (red, recurrence; blue, 
pseudoprogression). Only 2 of 18 patients labeled as pseudoprogression were incorrectly classified as having tumor recurrence (88.9% speci-
ficity); all patients with tumor recurrence were correctly diagnosed (100.0% sensitivity). Overall diagnostic accuracy of glioma recurrence using 
SRH-CNN was 95.8%. (B) Example specimens from the external validation set with SRH images and CNN probability heatmaps. SRH images from 
patient 2 did not show evidence of tumor recurrence, and our semantic segmentation method correctly identified regions of reactive astrocytosis 
as pseudoprogression. Patient 34 was found to have recurrent oligodendroglioma, WHO grade II, and dense regions of infiltrative low-grade glioma 
were correctly identified. Patient 48 was found to have dense, viable recurrent glioblastoma, WHO grade IV. These findings indicate that our seg-
mentation method correctly segmented regions of both lower-grade and malignant gliomas with similar accuracy. Scale bars = 50 μm.
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Future applications of SRH and deep learning include 
moving beyond histopathologic diagnosis toward molec-
ular classification. The WHO classification integrates both 
histopathology and molecular diagnostics to stratify pa-
tients into the most informative subgroups. Intraoperative, 
real-time identification of the known spatial and temporal 
molecular heterogeneity of gliomas could provide a much 
richer understanding of clonal evolution.21,30 Preliminary 
studies using Raman spectroscopy have shown prom-
ising results for detecting some molecular subtypes of 
gliomas.31,32 We hope that the nonlinear excitation induced 
by SRH will generate a rapid and accurate method to de-
tect glioma driver mutations in near-real time.

In conclusion, rapid, label-free detection of glioma recur-
rence can be achieved using intraoperative SRH and deep 
neural networks. A parallel, automated, intraoperative pa-
thology pipeline for differentiating true progression versus 
pseudoprogression will be indispensable in the era of per-
sonalized medicine. Accurate tumor sampling at the time 
of glioma recurrence will provide invaluable diagnostic 
information to proactively guide patient management and 
increase knowledge of glioma biology.
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