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Rapid intraoperative histology of unprocessed 
surgical specimens via fibre-laser-based 
stimulated Raman scattering microscopy
Daniel A. Orringer1*, Balaji Pandian1, Yashar S. Niknafs1, Todd C. Hollon1, Julianne Boyle1, Spencer Lewis1,  
Mia Garrard1, Shawn L. Hervey-Jumper1, Hugh J. L. Garton1, Cormac O. Maher1, Jason A. Heth1,  
Oren Sagher1, D. Andrew Wilkinson1, Matija Snuderl2, 3, Sriram Venneti4, Shakti H. Ramkissoon5, 6, 
Kathryn A. McFadden4, Amanda Fisher-Hubbard4, Andrew P. Lieberman4, Timothy D. Johnson7,  
X. Sunney Xie8, Jay K. Trautman9, Christian W. Freudiger9 and Sandra Camelo-Piragua4*

Conventional methods for intraoperative histopathologic diagnosis are labour- and time-intensive, and may delay decision-
making during brain-tumour surgery. Stimulated Raman scattering (SRS) microscopy, a label-free optical process, has been 
shown to rapidly detect brain-tumour infiltration in fresh, unprocessed human tissues. Here, we demonstrate the first appli-
cation of SRS microscopy in the operating room using a portable fibre-laser-based microscope and unprocessed specimens 
from 101 neurosurgical patients. We also introduce an image-processing method—stimulated Raman histology (SRH)—that 
leverages SRS images to create virtual haematoxylin-and-eosin-stained slides, revealing essential diagnostic features. In a 
simulation of intraoperative pathologic consultation in 30 patients, we found a remarkable concordance of SRH and conven-
tional histology for predicting diagnosis (Cohen’s kappa, κ > 0.89), with accuracy exceeding 92%. We also built and validated 
a multilayer perceptron based on quantified SRH image attributes that predicts brain-tumour subtype with 90% accuracy.  
Our findings provide insight into how SRH can now be used to improve the surgical care of brain-tumour patients.

The optimal surgical management of brain tumours var-
ies widely depending on histologic subtype. Although some 
tumours of the central nervous system (CNS) have a distinct 

gross appearance, others are difficult to differentiate. Consequently, 
the importance of intraoperative histopathologic diagnosis in brain-
tumour surgery has been recognized for over 85 years1.

Existing intraoperative histologic techniques, including fro-
zen sectioning and cytologic preparations, require skilled techni-
cians and clinicians working in surgical pathology laboratories 
to produce and interpret slides2. However, the number of centres 
where brain-tumour surgery is performed exceeds the number of 
board-certified neuropathologists, eliminating the possibility for 
expert intraoperative consultation in many cases. Even in the most 
advanced, well-staffed hospitals, turnaround time for intraoperative 
pathology reporting may delay clinical decision-making during sur-
gery, highlighting the need for an improved system for intraopera-
tive histopathology.

The ideal system for intraoperative histopathology would deliver 
rapid, standardized and accurate diagnostic images to assist in sur-
gical decision-making. Improved access to intraoperative histologic 
data would enable examination of clinically relevant histologic 
variations within a tumour and the assessment of the resection  

cavity for residual tumour. In addition, given that the percentage of 
tumour removed at the time of surgery is a major prognostic factor 
for brain-tumour patients3, intraoperative techniques to accurately 
identify residual tumour are essential.

The development of stimulated Raman scattering (SRS) micros-
copy in 2008 created the possibility of rapid, label-free, high- 
resolution microscopic imaging of unprocessed tissue specimens4. 
Although SRS has been shown to reveal key diagnostic histologic 
features in brain-tumour specimens5–7, major technical hurdles have 
hindered its clinical translation. SRS microscopy requires two laser 
pulse trains that are temporally overlapped by less than the pulse 
duration (that is, < 100 fs) and spatially overlapped by less than the 
focal spot size (that is, < 100 nm). Achieving these conditions typi-
cally requires free-space optics mounted on optical tables and state-
of-the-art, solid-state, continuously water-cooled lasers that are not 
suitable for use in a clinical environment4.

However, leveraging advances in fibre-laser technology8, we have 
engineered a clinical SRS microscope, allowing us to execute SRS 
microscopy in a patient care setting. Light guidance by the optical 
core of the fibre and the unique polarization-maintaining imple-
mentation of the laser source have enabled service-free operation 
in our operating room for over a year. The system also includes 
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improved noise cancellation electronics for the suppression of high 
relative intensity noise, one of the major challenges of executing 
fibre-laser-based SRS microscopy.

Using this system, we show that SRS microscopy can serve as 
an effective, streamlined alternative to traditional histologic meth-
ods, eliminating the need to transfer specimens out of the operating 
room to a pathology laboratory for sectioning, mounting, dyeing 
and interpretation. Moreover, because tissue preparation for SRS 
microscopy is minimal, key tissue architectural details commonly 
lost in smear preparations and cytologic features often obscured in 
frozen sections are preserved. We also report a unique method for 
SRS image processing that simulates haematoxylin and eosin (H&E) 
staining, called stimulated Raman histology (SRH), which high-
lights key histoarchitectural features of brain tumours and enables 
diagnosis in near-perfect agreement with conventional H&E-based 
techniques. Finally, we demonstrate how a supervised machine-
learning approach, based on quantified SRH image attributes, effec-
tively differentiates among diagnostic classes of brain tumours. Our 
study demonstrates that SRH may provide an automated, standard-
ized method for intraoperative histopathology that can be leveraged 
to improve the surgical care of brain tumours in the future.

Engineering a clinical SRS microscope
To eliminate reliance on optical hardware incompatible with the 
execution of SRS microscopy in an operating room, we created  
a fully integrated imaging system with five major components:  
(1) a fibre-coupled microscope with a motorized stage; (2) a 
dual-wavelength fibre-laser module; (3) a laser control module;  
(4) a microscope control module; and (5) a computer for image 
acquisition, display and processing. The entire system is mounted 
in a portable, self-contained clinical cart, utilizes a standard wall 
plug and does not require water-cooling (Fig. 1a).

The dual-wavelength fibre-laser is based on the fact that the dif-
ference frequency of the two major fibre gain media, erbium and 
ytterbium, overlaps with the high wavenumber region of Raman 
spectra. As previously described8, the two synchronized narrow-
band laser pulse trains required for SRS imaging are generated by 
narrow-band filtering of a broad-band super-continuum derived 
from a single fibre-oscillator and, subsequently, amplification in the 
respective gain media (Fig. 1b).

For clinical implementation, we developed an all-fibre system 
based on polarization-maintaining components, which greatly 
improved stability over the previous non-polarization-maintaining 
system. The system described here was stable throughout transcon-
tinental shipping (from California to Michigan), and continuous, 
service-free, long-term (> 1 yr) operation in a clinical environment, 
without the need for realignment. To enable high-speed diagnostic-
quality imaging (1 megapixel in 2 seconds per wavelength) with a 
signal-to-noise ratio comparable to what can be achieved with 
solid-state lasers, we scaled the laser output power to approximately 
120 mW for the fixed wavelength 790 nm pump beam and approxi-
mately 150 mW for the tunable Stokes beam over the entire tun-
ing range from 1,010 to 1,040 nm at 40 MHz repetition rate and 2 ps 
transform-limited pulse duration. We also developed fully custom 
laser controller electronics to tightly control the many settings of 
this multi-stage laser system based on a micro-controller. Once 
assembled, we determined that the SRS microscope had a lateral 
resolution of 360 nm (full width of half maximum) and axial resolu-
tion of 1.8 μ m (Supplementary Fig. 1).

Although development of an all-fibre system was necessary for 
clinical implementation of SRS, relative intensity noise intrinsic to 
fibre lasers vastly degrades SRS image quality (Fig. 1c). To improve 
image quality, we developed a noise-cancellation scheme based on 
auto-balanced detection8, in which a portion of the laser beam is 
sampled to provide a measure of the laser noise that can then be 
subtracted in real time. Here, we demonstrate that we can achieve 

approximately 25-fold improvement in the signal-to-noise ratio in a 
clinical setting, without the need for adjustment, which is essential 
for revealing microscopic tissue architecture (Fig. 1d).

Processing of clinical SRS images
Histologic images of fresh, unstained surgical specimens are cre-
ated with the clinical SRS microscope by mapping two Raman shifts: 
2,845 cm−1, which corresponds to CH2 bonds that are abundant in 
lipids (Fig. 2a), and 2,930 cm−1, which corresponds to CH3 bonds that 
predominate in proteins and DNA (Fig. 2b). Assigning a subtracted 
CH3–CH2 image (Fig. 2c) to a blue channel and assigning the CH2 
image to the green channel results in an image with contrast that is 
suitable for brain-tumour detection (Fig.  2d)9. However, given the 
ultimate goal of creating an imaging system that produces histologic 
images that are familiar to clinicians10–12, we devised SRH, a method of 
processing SRS images that is reminiscent of H&E staining (Fig. 2e). 
Unlike previous methods for achieving virtual H&E images through 
hyperspectral SRS microscopy12, SRH relies on only two Raman shifts 
(2,845 and 2,930 cm−1) to generate the necessary contrast. Although 
the colours in SRH images do not correspond exactly with the stain-
ing of acidic (haematoxylin) or basic (eosin) moieties, there is strong 
overlap between the two methods (Fig. 2f), simplifying interpreta-
tion. To produce SRH images, fields-of-view (FOVs) are acquired at 
a speed of two seconds per frame in a mosaic pattern, stitched and 
recoloured. The end result is an SRH mosaic (Fig. 2g) resembling a 
traditional H&E-stained slide. The time of acquisition for the mosaic 
shown in Fig. 2g is 2.5 min and it can be rapidly transmitted to any 
networked workstation directly from an operating room.

Detection of diagnostic histologic features with SRH
We assessed the ability of SRH to reveal the diagnostic features required 
to detect and classify tumours of the CNS by imaging fresh surgical 
specimens from 101 neurosurgical patients (Supplementary Table 1) 
via an institutional review board (IRB)-approved protocol (University 
of Michigan IRB HUM00083059). Like conventional H&E images, 
SRH images reveal the cellular and architectural features that permit 
differentiation of non-lesional (Fig. 3a–c) and lesional (Fig. 3d–i) tis-
sues. When imaged with SRH, architecturally normal brain tissue 
from anterior temporal lobectomy patients (patients 6, 11 and 93) 
demonstrates neurons with angular cell bodies containing lipofus-
cin granules (Fig. 3a) and lipid-rich axons that appear as white linear 
structures (Fig. 3a,b). Non-neoplastic reactive changes, including glio-
sis (Fig. 3b) and macrophage infiltration (Fig. 3c), that may complicate 
intraoperative diagnosis are also readily visualized with SRH. Key dif-
ferences in cellularity, vascular pattern and nuclear architecture that 
distinguish low-grade (Fig. 3d; patient 3) from high-grade (Fig. 3e,f; 
patient 21) gliomas are apparent as well. Notably, SRH suggests that 
the perinuclear halos of oligodendroglioma cells (Fig. 3d), not typi-
cally seen on frozen sections and thought to be an artefact of fixation13, 
are reflective of abundant protein-rich tumour cell cytoplasm. In addi-
tion, by highlighting the protein-rich basement membrane of blood 
vessels, SRH is well-suited for highlighting microvascular proliferation 
in high-grade glioma (Fig. 3f; patient 37).

SRH also reveals the histoarchitectural features that enable 
diagnosis of tumours of non-glial origin (Fig. 3g–i), including the 
whorled architecture of meningiomas (Fig.  3g; patient 26), the 
discohesive monomorphic cells of lymphoma (Fig. 3h; patient 31) 
and the glandular architecture, large epithelioid cells and sharp 
borders of metastatic adenocarcinoma (Fig. 3i; patient 57). SRH is 
also capable of visualizing morphologic features that are essential 
in differentiating the three most common paediatric posterior fossa 
tumours—juvenile pilocytic astrocytoma, medulloblastoma and 
ependymoma—each of which have divergent goals for surgical man-
agement14. In pilocytic astrocytomas, SRH detects piloid (hair-like) 
architecture and Rosenthal fibres, which appear dark on SRH due 
to their high protein content (Supplementary Fig. 2a; patient 98).  
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SRH also reveals the markedly hypercellular, small, round, blue 
cell appearance and rosettes in medulloblastoma (Supplementary 
Fig. 2b; patient 101), as well as the monomorphic round-to-
oval cells forming perivascular pseudorosettes in ependymoma 
(Supplementary Fig. 2c; patient 87).

Detection of intratumoural heterogeneity with SRH
Gliomas often harbour histologic heterogeneity, which complicates 
diagnosis and treatment selection. Heterogeneity is particularly 
common in low-grade gliomas suspected of having undergone 

malignant progression and demonstration of anaplastic transforma-
tion is essential for making a diagnosis. SRH was successful in detect-
ing heterogeneity of tumour grade within a specimen collected from 
a patient with a recurrent oligodendroglioma of the right frontal 
cortex. In that specimen, SRH revealed both low-grade architecture  
and areas of high-grade architecture characterized by hypercellular, 
anaplastic and mitotically active tumour (Fig. 4a; patient 41).

In other tumours, such as mixed glioneuronal tumours, histologic 
heterogeneity is a necessary criterion for diagnosis: although any sin-
gle histopathologic sample may reveal glial or neuronal architecture,  
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Figure 1 | Engineering a clinical SRS microscope. a, SRS microscope in the UMHS operating room. b, Key components of the dual-wavelength fibre-laser-
coupled microscope required to create a portable, clinically compatible SRS imaging system. The top arm of the laser diagram indicates the scheme for 
generating the Stokes beam (red), while the bottom arm generates the pump beam (orange). Both beams are combined (purple) and passed through the 
specimen. Er, erbium; HNLF, highly nonlinear fibre; PD, photodiode; PPLN, periodically poled lithium niobate; Yb, ytterbium. c,d, Raw 2,845 cm−1 image of 
human tissue before (c) and after (d) balanced-detection-based noise cancellation.

http://dx.doi.org/10.1038/s41551-016-0027


4  NATURE BIOMEDICAL ENGINEERING 1, 0027 (2017) | DOI: 10.1038/s41551-016-0027 | www.nature.com/natbiomedeng

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

ARTICLES NATURE BIOMEDICAL ENGINEERING

the identification of both is necessary for diagnosis. In a patient with 
suspected ganglioglioma, a glioneuronal tumour, intraoperative 
SRH images of a superficial specimen (Fig. 4b; patient 96) revealed 
clustered dysplastic neurons, while a deep specimen revealed hyper-
cellular piloid glial architecture. Consequently, by providing a rapid 
means of imaging multiple specimens, SRH reveals intratumoural 
heterogeneity needed to establish clinically relevant variations in 
both grade and histoarchitecture during surgery.

Quantitative evaluation of SRH-based diagnosis
Given its ability to reveal diagnostic histologic features, we hypoth-
esized that SRH could provide an alternative to existing methods 
of intraoperative diagnosis. To test this hypothesis, we imaged 
specimens from 30 neurosurgical patients where intraoperative 
diagnosis was rendered using routine frozen sectioning or cytologi-
cal techniques (Supplementary Table 1; patients 72–101). Adjacent 
portions of the same specimens were utilized for both routine  
histology and SRH.

To simulate the practice of intraoperative histologic diagno-
sis, a computer-based survey was created, in which three board- 
certified neuropathologists (K.A.M., S.R. and M.S.), each practising at  

different institutions, were presented with SRH or routine (smear 
and/or frozen) images (Fig.  5), along with a brief clinical history 
regarding the patient’s age group (child or adult), lesion location 
and relevant past medical history. The neuropathologists responded 
with an intraoperative diagnosis for each case the way they would 
in their own clinical practices. Responses were graded based on: 
(1) whether tissue was classified as lesional or non-lesional; (2) for 
lesional tissues, whether they had a glial or non-glial origin; and 
(3) whether the response contained the same amount of diagnostic 
information (lesional status, grade, histologic subtype) as the offi-
cial clinical intraoperative diagnosis.

Assessing the pathologists’ diagnostic performance when utiliz-
ing SRH versus clinical frozen sections revealed near-perfect con-
cordance (Cohen’s kappa) between the two histologic methods for 
distinguishing lesional and non-lesional tissues (κ =  0.84–1.00) 
(Table 1) and for distinguishing lesions of glial origin from non-glial 
origin (κ =  0.93–1.00) (Table 1). There was also near-perfect concor-
dance between the two modalities in predicting the final diagnosis 
(κ =  0.89–0.92) (Table  1). Reliability among reviewers and concor-
dance between SRH and standard H&E-based techniques for predict-
ing diagnosis was also nearly perfect (κ =  0.89–0.92). Notably, with 
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Figure 2 | Creating virtual H&E slides with the clinical SRS microscope. a–c, CH2 (a) and CH3 (b) images are acquired and subtracted (c). d, The CH2 
image is assigned to the green channel and the CH3 – CH2 image is assigned to the blue channel to create a two-colour blue–green image. e,f, Applying an 
H&E lookup table, SRH images (e) are comparable to a similar section of tumour imaged after formalin-fixation, paraffin-embedding and H&E staining (f). 
g, Mosaic tiled image of several SRH FOVs to create a mosaic of imaged tissue. The asterisk (*) indicates a focus of microvascular proliferation, the dashed 
circle indicates calcification and the dashed box demonstrates how the FOV in e fits into the larger mosaic. Scale bars, 100 μ m.
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SRH, the pathologists were highly accurate in distinguishing lesional 
from non-lesional tissues (98%) and glial from non-glial tumours 
(100%), and in predicting diagnosis (92.2%). These findings suggest 
that pathologists’ ability to derive histopathologic diagnoses from 
SRH images is both accurate and highly concordant with traditional 
histologic methods.

Although both methods were highly accurate in predicting diag-
nosis, six of the SRH-based diagnostic discrepancies occurred in the 
classification of glial tumours (Table 1, Fig. 5c and Supplementary 

Fig. 3a). In three separate instances, pathologists were able to cor-
rectly identify a specimen as being glioma, but did not provide a 
specific grade. Two specimens classified as ‘glioma’ with SRH were 
classified as ‘high-grade glioma’ with H&E-based techniques. High-
grade features in gliomas include: significant nuclear atypia, mitotic 
activity, microvascular proliferation and necrosis. Assessment of 
nuclear atypia and mitotic figures is subjective and requires ample 
expertise based on review of hundreds of cases to set up a thresh-
old of ‘normal’ versus atypical morphology in a specimen. Given the 
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Figure 3 | Imaging of key diagnostic histoarchitectural features with SRH. a, Normal cortex reveals scattered pyramidal neurons (blue arrowheads) with 
angulated boundaries and lipofuscin granules, which appear red. White linear structures are axons (green arrowheads). b, Gliotic tissue contains reactive 
astrocytes with radially directed fine protein-rich processes (red arrowheads) and axons (green arrowheads). c, A macrophage infiltrate near the edge of a 
glioblastoma reveals round, swollen cells with lipid-rich phagosomes. d, SRH reveals scattered ‘fried egg’ tumour cells with round nuclei, ample cytoplasm, 
perinuclear halos (inset and yellow arrowheads) and neuronal satellitosis (purple arrowhead) in a diffuse 1p19q-co-deleted low-grade oligodendroglioma. 
Axons (green arrowhead) are apparent in this tumour-infiltrated cortex as well. e, SRH demonstrates hypercellularity, anaplasia, and cellular and nuclear 
pleomorphism (inset) in a glioblastoma. A large binucleated tumour cell is shown (inset) in contrast to smaller adjacent tumour cells. f, SRH of another 
glioblastoma reveals microvascular proliferation (orange arrowheads) with protein-rich basement membranes of angiogenic vasculature appearing purple.  
g–i, SRH reveals the whorled architecture of meningioma (black arrowheads, g), monomorphic cells of lymphoma with high nuclear:cytoplasmic  
ratio (h) and the glandular architecture (inset; grey arrowhead) of a metastatic colorectal adenocarcinoma (i). Insets are magnified images from the same 
specimens. Large-image scale bars, 100 μ m; inset-image scale bars, 20 μ m.
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subtle difference in appearance of nuclear architecture in H&E and 
SRH, pathologists may have been more conservative in terms of ren-
dering atypical and mitotic attributions to tumour cells with SRH.

Differences in tissue preparation between conventional tech-
niques (that is, sectioning) and SRH (that is, gentle squash) result in 
differences in the appearance of vascular architecture. Microvascular 
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Figure 4 | SRH reveals structural heterogeneity in human brain tumours. a, Left: a magnetic resonance imaging (MRI) image of a patient with a history of 
low-grade oligodendroglioma who was followed for an enlarging enhancing mass (yellow arrowhead) in the previous resection cavity (red circle). Right: SRH 
imaging of the resected tissue reveals areas with low-grade oligodendroglioma architecture in some regions (left column) with foci of anaplasia (right column) 
in other areas of the same specimen. b, Left: an MRI image of a patient with suspected ganglioglioma. Gangliogliomas are typically composed of cells of 
neuronal and glial lineage. Right: SRH reveals architectural differences between a shallow tissue biopsy at the location indicated with a green arrowhead on the 
preoperative MRI, where disorganized binucleated dysplastic neurons predominate (left column), and a deeper biopsy (blue arrowhead), where architecture is 
more consistent with a hypercellular glioma (right column). Formalin-fixation, paraffin-embedding, H&E-stained images are shown for comparison.
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proliferation is defined as intraluminal endothelial proliferation 
(several layers of endothelial cells in a given vessel) and is essential 
in grading gliomas at the time of intraoperative consultation. This 
can be easier to observe when tissue is sectioned and analysed in 
two dimensions (Supplementary Fig. 3a). In contrast, although SRH 
is able to highlight basement membranes nicely, in some cases, it 
does not reveal the classic architectural features of microvascular 
proliferation (Supplementary Fig. 3c).

Undersampling from specimens may have also contributed 
to the discrepancies observed. In three survey items, pathologists 
misdiagnosed ependymoma as ‘pilocytic astrocytoma’ or gave a 
more general description of the tumour as ‘low-grade glioma’ using 
SRH images (Supplementary Fig. 3a). Ependymomas and pilocytic 
astrocytomas may have similar nuclear morphology of monotonous 
elongated nuclei embedded in a background composed of thin glial 
processes (piloid-like). In the absence of obvious perivascular pseu-
dorosettes, ependymal rosettes or hyalinized vessels, which were 
not obvious in the survey items, and may be unevenly distributed 
throughout a tumour, it is understandable that an ependymoma 
could be misclassified as a pilocytic astrocytoma. Given the concor-
dance of SRH images with traditional H&E images in our patients, 

we hypothesize that these errors might have been avoided if larger 
specimens were provided to reviewers.

Machine learning-based tissue diagnosis
Intraoperative image data that are most useful for clinical decision-
making are rapidly obtained and accurate. Interpretation of histo-
pathologic images by pathologists is labour- and time-intensive and 
prone to inter-observer variability. Consequently, a system rapidly 
delivering prompt, consistent and accurate tissue diagnoses would 
be greatly helpful during brain-tumour surgery. Although we have 
previously shown that tumour infiltration can be predicted by quan-
titative analysis of tissue attributes in SRS images6, we hypothesized 
that more robust computational processing would be required to 
predict tumour diagnostic class.

We employed a machine-learning process called a multilayer 
perceptron (MLP) for diagnostic prediction because it is easy to iter-
ate, easy to verify and efficient with current computational power.  
To create the MLP, we incorporated 12,879, 400 μ m ×  400 μ m SRH 
FOVs from our series of 101 patients. We used WND-CHRM,  
an open-source image classification programme that calculates 
2,919 image attributes for machine learning15 to assign quantified 

Table 1 | SRH versus conventional histology survey results.
Specimen type Imaging modality Neuropathologist 1 Neuropathologist 2 Neuropathologist 3 Combined accuracy (%)

Correct Incorrect Correct Incorrect Correct Incorrect

Differentiating non-lesional and lesional specimens
Normal SRH 4 1 5 0 5 0 93

H&E 3 2 5 0 5 0 86

Glial tumour SRH 15 0 15 0 15 0 100

H&E 15 0 15 0 15 0 100

Non-glial tumour SRH 10 0 10 0 10 0 100

H&E 10 0 10 0 10 0 100

Total SRH 29 1 30 0 30 0 98

H&E 28 2 30 0 30 0 97.7

Combined accuracy (%) 90 100 100 95

Concordance (κ) 0.84 1 1

Differentiating glial and non-glial tumours
Glial tumour SRH 15 0 15 0 15 0 100

H&E 15 0 15 0 15 0 100

Non-glial tumour SRH 10 0 10 0 10 0 100

H&E 10 0 10 0 10 0 100

Total SRH 25 0 25 0 25 0 100

H&E 25 0 25 0 25 0 100

Combined accuracy (%) 100 100 100 100

Concordance (κ) 1 1 1

Differentiating diagnostic subtypes
Normal SRH 4 1 5 0 5 0 93

H&E 3 2 5 0 5 0 86

Glial tumour SRH 14 1 12 3 13 2 86.6

H&E 14 1 14 1 15 0 95.5

Non-glial tumour SRH 10 0 10 0 10 0 100

H&E 10 0 9 1 10 0 96.6

Total SRH 28 1 27 3 28 2 92.2

H&E 27 3 28 2 30 0 94.4

Combined accuracy (%) 91.6 91.6 97 94

Concordance (κ) 0.924 0.855 0.923
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To test the accuracy of the MLP, we used a leave-one-out approach, 
wherein the training set contained all FOVs except those from the 
patient being tested. This method maximizes the size of the train-
ing set and eliminates possible correlation between samples in the 
training and test sets. The MLP makes predictions on an individual 
FOV level, yielding probabilities that a given FOV belongs to one of 
the four diagnostic classes: non-lesional, low-grade glial, high-grade 
glial or non-glial tumour (including metastases, meningioma, lym-
phoma and medulloblastoma) (Fig. 6a). The four diagnostic classes 
were selected because they provide critical information for inform-
ing decision-making during brain-tumour surgery.

Given the histoarchitectural heterogeneity of CNS tumours and 
the fact that some specimens may contain a mixture of normal and 
lesional FOVs, we judged the diagnostic accuracy of the MLP based 
on the most common or modal-predicted diagnostic class of FOVs 
within each specimen (Fig. 6b). For example, although the specimen 
from patient 87 exhibited some features of all diagnostic classes in 
various SRH FOVs (Fig. 6a), the MLP assigned the low-grade glial 
category as the highest probability diagnosis in most of the FOVs 
(Fig. 6b), resulting in the correct classification of this specimen as a 
low-grade glial tumour.

To evaluate the MLP in a test set of cases read by multiple pathol-
ogists, we applied the leave-one-out approach on each of the 30 cases 
included in the survey administered to pathologists, as described 
above in ‘Quantitative evaluation of SRH-based diagnosis’. Based on 
modal diagnosis, the MLP accurately differentiated lesional from 
non-lesional specimens with 100% accuracy (Fig. 7a). In addition, 
the diagnostic capacity of the MLP for classifying individual FOVs 
as lesional or non-lesional was excellent, with 94.1% specificity and 
94.5% sensitivity (area under curve =  0.984; Supplementary Fig. 4).  
Among lesional specimens, the MLP differentiated glial from non-
glial specimens with 90% accuracy at the sample level (Fig. 7b). The 
modal diagnostic class predicted by the MLP was 90% accurate  
in predicting the diagnostic class rendered by pathologists in the 
setting of our survey (Fig. 7c).

The cases misclassified by the MLP included a minimally hyper-
cellular specimen with few Rosenthal fibres from a pilocytic astro-
cytoma (patient 84), which was classified as non-lesional rather than 
low-grade glioma. In this specimen, many of the FOVs resemble 
normal glial tissue (Supplementary Fig. 5a). Another misclassi-
fied specimen from a patient with leptomeningeal metastatic car-
cinoma (patient 72) contained only two FOVs containing tumour 
(Supplementary Fig. 5b). The glioblastoma specimen from patient 
82 (Supplementary Fig. 5c), misclassified as a non-glial tumour by 
the MLP, contained protein-rich structural elements that resem-
bled the histoarchitecture of metastatic tumours imaged with SRH 
(Supplementary Fig. 5d; patient 85). Despite these errors, the accu-
racy and overall ability of the MLP in automated detection of lesional 
status and diagnostic category provides proof-of-principle for how 
the MLP could be used for automated diagnostic predictions.

Discussion
Accurate intraoperative tissue diagnosis is essential during brain-
tumour surgery. Surgeons and pathologists rely on trusted tech-
niques such as frozen sectioning and smear preparations that are 
reliable, but prone to artefacts that limit interpretation and may delay 
surgery. A simplified standardized method for intraoperative histol-
ogy would create the opportunity to use intraoperative histology to 
ensure more efficient, comprehensive sampling of tissue within and 
surrounding a tumour. By ensuring high-quality tissue is sampled 
during surgery, SRH raises the yield on testing biopsies for molecular 
markers (for example, isocitrate dehydrogenase and α thalassemia/
mental retardation syndrome X-linked mutation, 1p19q co-deletion,  
O-6-methylguanine-DNA methyl-transferase and telomerase reverse  
transcriptase-promoter alteration) that are increasingly important in 
rendering final diagnosis. Here, we report the first demonstration of 

attributes to each FOV. Normalized quantified image attributes 
were fed into the MLP for training, iterating until the difference 
between the predicted and observed diagnoses was minimized  
(see Methods).
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gliotic brain tissue
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medulloblastoma
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Figure 5 | Simulation of intraoperative histologic diagnosis with SRH.  
A web-based survey consisting of specimens from 30 patients  
(patients 72–101) imaged with both SRH and conventional H&E methods 
was administered to three neuropathologists. Neuropathologists  
recorded free-form responses as they would during a clinical  
intraoperative histologic consult. a–c, Responses were graded based  
on whether tissue was judged as lesional or non-lesional (a) glial or  
non-glial (b) and on the accuracy of diagnosis (c). SRH and H&E 
preparations for six examples of portions of specimens presented in 
the survey are shown: gliotic brain tissue (patient 91), medulloblastoma 
(patient 101), anaplastic astrocytoma (patient 76), meningioma  
(patient 95), glioblastoma (patient 82) and metastatic carcinoma  
(patient 74). Scale bars, 50 μ m.
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SRS microscopy in a clinical setting and show how it can be used to 
rapidly create histologic images from fresh specimens with diagnos-
tic value comparable to conventional techniques.

Fluorescence-guided surgery16, mass spectrometry17, Raman 
spectroscopy18, coherent anti-Stokes Raman scattering micros-
copy19,20 and optical coherence21 tomography, which exploit histo-
logic and biochemical differences between tumour-infiltrated and 
normal tissues, have been proposed as methods for guiding exci-
sion of brain and other types of tumours22,23. To date, however, no 
microscopic imaging modality tested in a clinical setting has been 
successful in rapidly creating diagnostic-quality images to inform 

intraoperative decision-making. Here, we show that by leveraging 
advances in optics and fibre-laser engineering, it is possible to create 
an SRS microscope that is easy to operate, durable and compatible 
with a patient care environment, which rapidly provides diagnostic 
histopathologic images.

SRH is well-suited for integration into the existing workflow 
for brain-tumour surgery. A surgical instrument that can simul-
taneously collect biopsies for SRH and be tracked by a stereotac-
tic navigational system would enable the linkage of histologic  
and positional information in a single display, as previously sug-
gested24. Integration of SRH and surgical navigation would create 
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Figure 6 | MLP classification of SRH images. The specimen from patient 87, a low-grade ependymoma, was classified by the MLP as a low-grade glial 
tumour. a, An SRH mosaic depicting the low-grade glial tumour diagnostic class with individual FOVs designated by dashed lines (centre). Four individual 
FOVs are depicted at higher scale (coloured outlines), with the MLP diagnostic probability for all four categories listed above: P(NL), probability of  
non-lesional; P(LGG), probability of low-grade glial; P(HGG), probability of high-grade glial; P(NG), probability of non-glial. Representative FOVs include: 
orange outline, a FOV with a small number of ovoid tumour cells (arrowheads) classified as low-grade glioma; green outline, a FOV with high cellularity 
with frequent hyalinized blood vessels (arrowheads) classified as non-glial tumour; yellow outline, a FOV with moderate cellularity and abundant piloid 
processes classified as a low-grade glioma; and blue outline, a FOV with higher cellularity and several prominent vessels (arrowheads) classified as  
high-grade glial tumour. Scale bars are 100 μ m for the individual FOVs and 500 μ m for the mosaic image. b, Probability heatmaps overlaid on the SRH 
mosaic image indicate the MLP-determined probability of class membership for each FOV across the mosaic image for the four diagnostic categories. 
Coloured boxes correspond to the FOVs highlighted in a.
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the possibility of verifying that maximal safe cytoreduction has  
been executed throughout a surgical cavity. In situations where 
tumour is detected by SRH but cannot be safely removed, it  
might be possible to serve as a way to better focus the delivery of 
adjuvant therapies.

As medical data become increasingly computer-based, the oppor-
tunity to acquire virtual histologic sections via SRH creates numer-
ous opportunities. For example, in many clinical settings where 
brain-tumour surgery is carried out, neuropathology services are not 
available. Currently there are 785 board-certified neuropathologists 
serving the approximately 1,400 hospitals performing brain-tumour 
surgery in the United States (Supplementary Table 2). A networked 
SRS microscope, like the prototype introduced here, streamlines 
both sample preparation and imaging and creates the possibil-
ity of connecting expert neuropathologists to surgeons—either  

within the same hospital or in another part of the world—to deliver 
precise intraoperative diagnosis during surgery.

Computer-aided diagnosis may ultimately reduce the inter-
reader variability inherent in pathologic diagnosis and might 
provide guidance in settings where an expert neuropathologist 
is not available. Our results and the work of others suggest that 
machine-learning algorithms can be used to detect and diagnose 
brain tumours. Previous work in computer-aided diagnosis in neu-
ropathology has shown promise in differentiating diagnostic enti-
ties in formalin-fixed, paraffin-embedded, H&E-stained whole 
slide images25,26. The ideal computer-aided diagnostic system for 
intraoperative histology would reliably predict diagnosis in small 
fresh tissue samples. The classifier reported here is capable of dis-
tinguishing lesional from non-lesional tissue samples and in pre-
dicting diagnostic class based on pooled tile data. In the future, we 
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Figure 7 | MLP-based diagnostic prediction. a, Heatmap depiction of the classification of cases as lesional or non-lesional via MLP. Y indicates correct 
MLP prediction and N indicates incorrect prediction. b, Heatmap depiction of the classification of cases as glial or non-glial via MLP. Y indicates correct 
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anticipate that a machine-learning approach will be capable of finer 
diagnostic classification. We also hypothesize that the accuracy of 
diagnostic classifiers might also be improved via (1) exploring alter-
native neural network configurations and systems for convolution; 
(2) employing feature-based classification; (3) utilizing support vec-
tor machines or statistical modelling approaches; and (4) applying 
rules for data interpretation that account for demographic factors 
and medical history.

Outlook
SRS microscopy can now be utilized to provide rapid intraoperative 
assessment of tissue architecture in a clinical setting with minimal 
disruption to the surgical workflow. SRH images may ultimately be 
used to render diagnosis in brain-tumour specimens with a high 
degree of accuracy and near-perfect concordance with standard 
intraoperative histologic techniques. Prospective, randomized clini-
cal studies will be necessary to validate these results and define how 
SRH can be used to expedite clinical decision-making and improve 
the care of brain-tumour patients.

Methods
Study design. The inclusion criteria for this study were as follows: (1) males 
and females; (2) subjects undergoing brain-tumour resection at the University 
of Michigan Health System (UMHS); (3) subjects (or designee) able to provide 
informed consent; and (4) subjects in which there was excess tumour tissue  
beyond what was needed for routine diagnosis. The sample size was estimated  
at 100 patients to ensure adequate representation of all major tumour types for  
analysis and based on the design of previous studies comparing SRS and H&E. 
The central goals of this study were: (1) to build and verify the first clinical SRS 
microscope; (2) to judge SRH as a means of providing diagnostic histopathologic 
images; and (3) to determine if machine learning could accurately classify SRH 
images of fresh human brain-tumour specimens. We began by collecting biopsies 
(N =  125) from neurosurgical patients undergoing tumour resection (N =  98) or  
anterior temporal lobectomy (N =  3). Each specimen was imaged immediately after 
removal with SRS microscopy. A trained neuropathologist (S.C.-P.) then classified 
each biopsy based on World Health Organisation diagnostic criteria13. We then 
quantified the correlation between SRH and H&E tissue imaging through a survey 
administered to neuropathologists (K.A.M., S.H.R. and M.S.). To quantify the SRH 
images, we utilized WND-CHRM, which assigns 2,919 attributes to each image. 
We then used the quantified image attributes to build and train an MLP to classify 
the images based on diagnostic class. Diagnostic predictions were rendered  
based on the diagnostic class predicted most commonly by the MLP for FOVs  
in a given specimen.

Tissue collection and imaging. All tissues were collected in the context of a 
University of Michigan Medical School IRB-approved protocol from patients  
who provided informed consent (IRB HUM0000083059). Tissues in excess of what 
was needed for diagnosis were eligible for imaging. In a subset of patients where 
the frozen section was large enough to split (patients 72–101), half of the specimen 
was routed for SRH imaging and the other half of the specimen became the tissue 
for clinical frozen section diagnosis.

To image tissue with the clinical SRS microscope, a small (approximately 3 mm 
thick) portion of fresh tissue was placed on a standard uncoated glass slide in the 
centre of a small piece of two-sided tape and flattened to a thickness of 120 μ m in a 
manner similar to a standard squash preparation. Normal saline (50 μ l) was applied 
to the tissue, then a coverslip was applied to the tissue and adhered to the slide, 
creating a chamber for imaging. This slide was then placed on a motorized stage 
and focused using standard transmission light microscopy. Using custom scripts 
in μ -Manager software and ImageJ software, two-channel (2,845 and 2,930 cm−1) 
images were obtained in a mosaic fashion.

Our prototype system is built on an Olympus microscope body, and we 
developed a fully custom beam-scanning unit that seamlessly integrates the laser 
source through fibre delivery. We also developed control electronics for both the 
laser and the microscope. Our custom imaging software is based on the open-
source microscopy platform μ -Manager. The imaging system appears as a ‘camera’, 
allowing us to leverage all the automated microscopy features provided by  
the μ -Manager environment to enable multi-colour mosaic imaging.

Virtual H&E colouring. Generating a virtual H&E image from the 2,845 and 
2,930 cm−1 images acquired from the SRS microscope utilizes a simple linear 
colour-mapping of each channel. After channel subtraction and flattening 
(described in ‘Image acquisition and stitching’), a linear colour remapping is 
applied to both the 2,845 and the 2,930 cm−1 channel. The 2,845 cm−1 image, a 
greyscale image, is linearly mapped such that a strong signal in the 2,930 cm−1 
image maps to an eosin-like reddish-pink colour instead of white. A similar linear 

mapping is applied to the 2,930 cm−1 image with a haematoxylin-like dark-blue–
violet colour mapped to a strong signal. Finally, these two layers are linearly  
added together to result in the final virtual-coloured H&E image.

The exact colours for the H&E conversion were selected by a linear 
optimization based on a collection of true H&E-stained slides created by the 
UMHS Department of Pathology. An initial seed colour was chosen at random 
for both H&E conversions. The previously described linear colour-mapping and 
addition process was completed with these initial seed colours. The ensuing image 
was hand-segregated into a cytoplasmic and nuclear portion. These portions  
were compared with the true H&E images and a cytoplasmic and nuclear hue 
difference between generated false-coloured H&E and true H&E was elucidated. 
The H&E seed colours were modified by these respective hue differences and the 
process was repeated until the difference between generated and true images was 
less than 1% different by hue.

Image acquisition and stitching. The procedure for generating a virtual-coloured 
H&E image from the SRS microscope consists of six discrete steps:

1. A mosaic acquisition script is started on the control computer that acquires an 
(N ×  N) series of 1,024 ×  1,024 pixel images from a pre-loaded tissue  
sample. These images are acquired at the 2,845 and 2,930 cm−1 Raman shifts 
and saved as individual two-channel FOVs to a pre-specified folder.

2. The two-channel image is duplicated and a Gaussian blur is applied to the 
duplicated image. The original two-channel image is then divided by the 
Gaussian blur to remove artefacts of acquisition and tissue preparation.

3. The 2,845 cm−1 channel is subtracted from the 2,930 cm−1 channel in  
each FOV.

4. New FOVs are created with the 2,845 cm−1 channel and the 2,930 cm−1 minus 
2,845 cm−1 channel.

5. The virtual-colour H&E script (described in ‘Virtual H&E colouring’) is  
run to create an H&E version of the subtracted and flattened tile.

6. The original tile is stitched as previously described27. The user is presented 
with an option to re-stitch with different stitching parameters if the initial 
stitch produces an unacceptable image. On successful stitching, a layout  
file is generated from the terminal positions of the individual tiles in the 
stitched image.

7. The virtual-colour H&E images are stitched using the layout file generated in 
step 6, a significantly faster process than re-computing the stitching offsets and 
merges from scratch.

Survey methodology. A computer-based survey consisting of 30 patients was 
developed and given to blinded neuropathologists (K.A.M., S.H.R. and M.S.), 
who were presented with standard frozen H&E images and SRH images. All 
cases included in the survey were judged to have SRH and conventional H&E 
preparations that contained the essential architectural features required for 
diagnosis. Each image was accompanied by a short clinical history that included 
age group, sex and presenting symptom(s). Survey responses were recorded 
automatically by the survey software. The intraoperative frozen and final 
pathologic diagnoses determined by standard clinical protocol employed by the 
UMHS Department of Pathology were also recorded. The survey responses  
were scored for accuracy on four levels: (1) for all specimens, whether tissue was 
lesional versus non-lesional; (2) for lesional tissues, whether the origin was glial  
or non-glial; (3) for glial tumours, whether the tumour was low- or high-grade;  
and (4) for all tumours, the predicted diagnosis. Responses were considered 
concordant if accuracy scores were equal. The maximum possible score for each 
case was determined by the clinical frozen section diagnosis. For each case,  
the following diagnoses were used for statistical analysis: UMHS frozen section 
diagnosis, survey frozen section diagnosis and survey SRH diagnosis.

Statistical analysis. For each pathologist, we calculated Cohen’s kappa28 for SRH 
versus H&E for lesion versus no lesion and for glioma versus no glioma. This 
provides information on how well SRH and H&E agree.

Cohen’s kappa was also calculated for final diagnosis from SRH versus truth 
(clinical frozen section diagnosis) and for H&E versus truth (clinical frozen section 
diagnosis), where final diagnosis was one of eleven categories, which tells us  
how well each pathologist was able to detect the truth from either SRH or H&E. 
Lastly, we calculated the reliability among the three pathologists (Fleiss’ kappa29)  
for SRH lesion versus no lesion, SRH glioma versus no glioma, H&E lesion  
versus no lesion and for H&E glioma versus no glioma. R software (version 3.3.0; 
http://www.r-project.org) was used for all statistical analyses.

No distributional assumptions are necessary for the kappa statistic.  
The only assumption is that the data are categorical and that SRH and  
H&E are measured on the same data, which they are. There is no estimate of 
variance for groups.

Generation of the MLP. The MLP was programmed with two software libraries: 
Theano and Keras. Theano (http://deeplearning.net/software/theano/index.html) 
is a high-performance low-level mathematical expression evaluator used to train 
the MLP. Keras (http://keras.io) is a high-level Python framework that serves  
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as a wrapper for Theano, allowing rapid iteration and testing of different  
MLP configurations.

The MLP is designed as a fully connected, 1,024-unit, one hidden layer,  
neural network. It comprises eight sequential layers in the following order:  
(1) dense input layer with uniform initialization; (2) hyperbolic tangent activation 
layer; (3) dropout layer with dropout probability 0.2; (4) dense hidden layer with 
uniform initialization; (5) hyperbolic tangent activation layer; (6) dropout layer 
with dropout probability 0.2; (7) dense output layer with uniform initialization; 
and (8) a softmax activation layer corresponding to the number of classifications 
(Supplementary Fig. 6).

Training of the MLP was performed using a training set that was exclusive  
from the survey test set. Loss was calculated using the multiclass log-loss strategy. 
The selected optimizer was the ‘Adam’ optimizer. The optimizer’s parameters  
were as follows: learning rate =  0.001, beta_1 =  0.9, beta_2 =  0.999 and 
epsilon =  1 ×  10−8.

Image processing and analysis by the MLP. The process to convert a raw SRH 
image to a probability vector for each of the diagnoses is as follows:

1. Use Fiji software (http://fiji.sc) to subtract the CH2 layer from the CH3 layer 
and flatten the image as described in ‘Tissue collection and imaging.’

2. Use Fiji software to split the two-channel image into a separate CH2 layer  
and a CH3–CH2 layer.

3. For each of the previous tiles, create four duplications of the tile with  
90° rotations (‘rotamers’).

4. Use WND-CHRM (http://scfbm.biomedcentral.com/articles/10.1186/ 
1751-0473-3-13) to generate signature files for each of the tiles from the  
previous step.

5. Normalize the signature files such that all of the feature values are uniformly 
and linearly mapped to the range (− 1.0, 1.0).

6. (CH2). For each of the tiles that correspond to CH2-channel tiles, run the MLP 
as described above.

7. (CH2). Gather all of the rotamers for a given tile and average (arithmetic 
mean) the prediction values from them to create one consolidated diagnosis-
probability vector for a given CH2-channel tile.

8. Repeat steps 6–7 for the CH3–CH2 channel.
9. For a given tile, compare the CH2 channel and the CH3–CH2 channel and 

discard the diagnosis-probability vector for the tile that has a lower maximal 
probability value.

10. For a case-by-case diagnosis, group all of the tiles for a case, remove any tile 
that does not have a diagnosis probability of > 0.25, and diagnose the case with 
the most prevalent (mode) diagnosis among the set of tiles.

MLP evaluation with the leave-one-out approach. To test the diagnostic accuracy 
of the MLP, we used a leave-one-out approach for the 30 patients that were used in 
the survey administered to neuropathologists. For each of the 30 patients used to 
evaluate the MLP, all FOVs (N) from that patient were placed in the test set. The 
training set was composed of the 12,879−N remaining FOVs. The 12,879 FOVs 
were screened by a neuropathologist to ensure they were representative of the 
diagnosis they were assigned to. FOVs were classified as non-lesional, pilocytic 
astrocytoma, ependymoma, oligodendroglioma, low-grade diffuse astrocytoma, 
anaplastic oligodendroglioma, anaplastic astrocytoma, glioblastoma, meningioma, 
lymphoma, metastatic tumour and medulloblastoma.

The MLP was trained for 25 iterations, with the following 26 iteration weights 
recorded to use for validation of the test set. The test set was fed into each of 
these 26 weights with the resulting probabilities of each of the 12 diagnostic 
classes averaged to create a final probability for each diagnosis for each FOV. 
The 12 diagnoses were condensed to four classes (non-lesional, low-grade glial, 
high-grade glial and non-glial) to achieve diagnostic predictions. The low-grade 
glial category included FOVs classified as pilocytic astrocytoma, ependymoma, 
oligodendroglioma and low-grade diffuse astrocytoma. The high-grade glial 
category included FOVs classified as anaplastic oligodendroglioma, anaplastic 
astrocytoma and glioblastoma. The non-glial category included FOVs classified as 
meningioma, lymphoma, metastatic tumour and medulloblastoma.

Nationwide inpatient sample query. The Nationwide Inpatient Sample database, 
obtained from the Healthcare Cost and Utilization Project of the Agency for 
Healthcare Research and Quality, was queried for years 2010 and 2011.  
The Nationwide Inpatient Sample database for these years contains discharge  
data for all discharges from a sample of hospitals representing 20% of all 
nationwide discharges from non-federal hospitals using a stratified random 
sampling technique.

Brain-tumour resections or biopsies were identified using combinations  
of International Classification of Diseases, 9th revision, Clinical Modification 
(ICD-9-CM) diagnosis and treatment codes that were previously used for studies 
of adult tumours30, paediatric tumours31 and pituitary tumours32. Primary tumour 
ICD-9-CM diagnosis codes used include 191.0–191.9, 225.0 and 237.5 and 
procedure codes used include 01.53, 01.59, 01.13 and 01.14. For other tumours, 
ICD-9-CM diagnosis codes used include 225.2, 192.1 and 237.6 for meningioma, 

198.3 for metastases, 225.1 for vestibular schwannomas and 227.3 for pituitary 
tumours. Procedure codes used include 01.51, 01.13 and 01.14 for meningioma, 
01.53, 01.59, 01.13 and 01.14 for metastases, 04.01 for vestibular schwannomas, 
and 07.62 and 07.65 for pituitary tumours.

The SRS microscopy system described in this paper is a prototype system  
that is intended for research-use only. It does not comply with international safety 
standards nor has it received approval or clearance from any government agency 
such as the US Food and Drug Administration.

Code availability. The computer code used to generate the results of this study  
is available on reasonable request from the corresponding author, with the 
exception of proprietary portions of code used for the generation of the virtual 
H&E colour scheme.

Data availability. All raw and processed-image data generated in this work, 
including the representative images provided in the manuscript, are available  
from the corresponding author on reasonable request.
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